File size: 6,997 Bytes
587665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import copy
import matplotlib.pyplot as plt
from typing import Any

import torch
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.optim import AdamW, Optimizer
from torch.utils.data import DataLoader
from lightning import LightningModule

from torchmetrics import MetricCollection
from torchmetrics.image import PeakSignalNoiseRatio as PSNR
from torchmetrics.image import StructuralSimilarityIndexMeasure as SSIM
from torchmetrics.image import LearnedPerceptualImagePatchSimilarity as LPIPS

from model.model import MultiInputResShift

from utils.utils import denorm, make_grid_images#, save_triplet 
from utils.ema import EMA
from utils.inter_frame_idx import get_inter_frame_temp_index
from utils.raft import raft_flow


class TrainPipline(LightningModule):
    def __init__(self, 
                 confg: dict, 
                 test_dataloader: DataLoader):
        super(TrainPipline, self).__init__()

        self.test_dataloader = test_dataloader

        self.confg = confg

        self.mean, self.sd = confg["data_confg"]["mean"], confg["data_confg"]["sd"]

        self.model = MultiInputResShift(**confg["model_confg"])
        self.model.flow_model.requires_grad_(False).eval()

        self.ema = EMA(beta=0.995)
        self.ema_model = copy.deepcopy(self.model).eval().requires_grad_(False)

        self.charbonnier_loss = lambda x, y: torch.mean(torch.sqrt((x - y)**2 + 1e-6))
        self.lpips_loss = LPIPS(net_type='vgg')

        self.train_metrics = MetricCollection({
            "train_lpips": LPIPS(net_type='alex'),
            "train_psnr": PSNR(),
            "train_ssim": SSIM()
        })
        self.val_metrics = MetricCollection({
            "val_lpips": LPIPS(net_type='alex'),
            "val_psnr": PSNR(),
            "val_ssim": SSIM()
        })

    def loss_fn(self, 
                x: torch.Tensor, 
                predicted_x: torch.Tensor) -> torch.Tensor:
        percep_loss = 0.2 * self.lpips_loss(x, predicted_x.clamp(-1, 1))
        pix2pix_loss = self.charbonnier_loss(x, predicted_x)
        return percep_loss + pix2pix_loss

    def sample_t(self, 
                 shape: tuple[int, ...], 
                 max_t: int, 
                 device: torch.device) -> torch.Tensor:
        p = torch.linspace(1, max_t, steps=max_t, device=device) ** 2 
        p = p / p.sum()  
        t = torch.multinomial(p, num_samples=shape[0], replacement=True)
        return t

    def forward(self, 
                I0: torch.Tensor, 
                It: torch.Tensor, 
                I1: torch.Tensor) -> torch.Tensor:
        flow0tot = raft_flow(I0, It, 'animation')
        flow1tot = raft_flow(I1, It, 'animation')
        mid_idx = get_inter_frame_temp_index(I0, It, I1, flow0tot, flow1tot).to(It.dtype)

        tau = torch.stack([mid_idx, 1 - mid_idx], dim=1)
        
        if self.current_epoch > 5:
            t = torch.randint(low=1, high=self.model.timesteps, size=(It.shape[0],), device=It.device, dtype=torch.long)
        else:
            t = self.sample_t(shape=(It.shape[0],), max_t=self.model.timesteps, device=It.device)

        predicted_It = self.model(I0, It, I1, tau=tau, t=t)
        return predicted_It

    def get_step_plt_images(self, 
                            It: torch.Tensor, 
                            predicted_It: torch.Tensor) -> plt.Figure:
        fig, ax = plt.subplots(1, 2, figsize=(20, 10))
        ax[0].imshow(denorm(predicted_It.clamp(-1, 1), self.mean, self.sd)[0].permute(1, 2, 0).cpu().numpy())
        ax[0].axis("off")
        ax[0].set_title("Predicted")
        ax[1].imshow(denorm(It, self.mean, self.sd)[0].permute(1, 2, 0).cpu().numpy())
        ax[1].axis("off")
        ax[1].set_title("Ground Truth")
        plt.tight_layout() 
        #img_path = "step_image.png"
        #fig.savefig(img_path, dpi=300, bbox_inches='tight') 
        plt.close(fig)
        return fig

    def training_step(self, batch: tuple[torch.Tensor, ...], _) -> torch.Tensor:
        I0, It, I1 = batch
        predicted_It = self(I0, It, I1)
        loss = self.loss_fn(It, predicted_It)

        self.log("lr", self.trainer.optimizers[0].param_groups[0]["lr"], prog_bar=True, on_step=True, on_epoch=False, sync_dist=True)
        self.log("train_loss", loss, prog_bar=True, on_step=True, on_epoch=False, sync_dist=True)

        self.ema.step_ema(self.ema_model, self.model)
        with torch.inference_mode():
            fig = self.get_step_plt_images(It, predicted_It)
            self.logger.experiment.add_figure("Train Predictions", fig, self.global_step)
            mets = self.train_metrics(It, predicted_It.clamp(-1, 1))
            self.log_dict(mets, prog_bar=True, on_step=True,on_epoch=False)
        return loss
    
    @torch.no_grad()
    def validation_step(self,  batch: tuple[torch.Tensor, ...], _) -> None:
        I0, It, I1 = batch
        predicted_It = self(I0, It, I1)
        loss = self.loss_fn(It, predicted_It)
        
        self.log("val_loss", loss, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)

        mets = self.val_metrics(It, predicted_It.clamp(-1, 1))
        self.log_dict(mets, prog_bar=True, on_step=False, on_epoch=True)

    @torch.inference_mode()
    def on_train_epoch_end(self) -> None:
        torch.save(self.ema_model.state_dict(), 
                   os.path.join("_checkpoint", f"resshift_diff_{self.current_epoch}.pth"))

        batch = next(iter(self.test_dataloader))
        I0, It, I1 = batch
        I0, It, I1 = I0.to(self.device), It.to(self.device), I1.to(self.device)

        flow0tot = raft_flow(I0, It, 'animation')
        flow1tot = raft_flow(I1, It, 'animation')
        mid_idx = get_inter_frame_temp_index(I0, It, I1, flow0tot, flow1tot).to(It.dtype)
        tau = torch.stack([mid_idx, 1 - mid_idx], dim=1)

        predicted_It = self.ema_model.reverse_process([I0, I1], tau)

        I0 = denorm(I0, self.mean, self.sd)
        I1 = denorm(I1, self.mean, self.sd)
        It = denorm(It, self.mean, self.sd)
        predicted_It = denorm(predicted_It.clamp(-1, 1), self.mean, self.sd)

        #save_triplet([I0, It, predicted_It, I1], f"./_output/target_{self.current_epoch}.png", nrow=1)
        grid = make_grid_images([I0, It, predicted_It, I1], nrow=1)
        self.logger.experiment.add_image("Predicted Images", grid, self.global_step)

    def configure_optimizers(self) -> tuple[list[Optimizer], list[dict[str, Any]]]:
        optimizer = [AdamW(
                        self.model.parameters(),
                        **self.confg["optim_confg"]['optimizer_confg']
                    )]
         
        scheduler = [{
            'scheduler': ReduceLROnPlateau(
                optimizer[0],
                **self.confg["optim_confg"]['scheduler_confg']
            ),
            'monitor': 'val_loss',
            'interval': 'epoch',
            'frequency': 1,
            'strict': True,
        }] 
                    
        return optimizer, scheduler