Spaces:
Running
on
L4
Running
on
L4
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from kornia.color import rgb_to_lab | |
from utils.utils import morph_open | |
from modules.cupy_module.softsplat import FunctionSoftsplat | |
class HalfWarper(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def backward_wrapping( | |
img: torch.Tensor, | |
flow: torch.Tensor, | |
resample: str = 'bilinear', | |
padding_mode: str = 'border', | |
align_corners: bool = False | |
) -> torch.Tensor: | |
if len(img.shape) != 4: img = img[None,] | |
if len(flow.shape) != 4: flow = flow[None,] | |
q = 2 * flow / torch.tensor([ | |
flow.shape[-2], flow.shape[-1], | |
], device=flow.device, dtype=torch.float)[None,:,None,None] | |
q = q + torch.stack(torch.meshgrid( | |
torch.linspace(-1, 1, flow.shape[-2]), | |
torch.linspace(-1, 1, flow.shape[-1]), | |
))[None,].to(flow.device) | |
if img.dtype != q.dtype: | |
img = img.type(q.dtype) | |
return F.grid_sample( | |
img, | |
q.flip(dims=(1,)).permute(0, 2, 3, 1).contiguous(), | |
mode = resample, # nearest, bicubic, bilinear | |
padding_mode = padding_mode, # border, zeros, reflection | |
align_corners = align_corners, | |
) | |
def forward_warpping( | |
img: torch.Tensor, | |
flow: torch.Tensor, | |
mode: str = 'softmax', | |
metric: torch.Tensor | None = None, | |
mask: bool = True | |
) -> torch.Tensor: | |
if len(img.shape) != 4: img = img[None,] | |
if len(flow.shape) != 4: flow = flow[None,] | |
if metric is not None and len(metric.shape)!=4: metric = metric[None,] | |
flow = flow.flip(dims=(1,)) | |
if img.dtype != torch.float32: | |
img = img.type(torch.float32) | |
if flow.dtype != torch.float32: | |
flow = flow.type(torch.float32) | |
if metric is not None and metric.dtype != torch.float32: | |
metric = metric.type(torch.float32) | |
assert img.device == flow.device | |
if metric is not None: assert img.device == metric.device | |
if img.device.type=='cpu': | |
img = img.to('cuda') | |
flow = flow.to('cuda') | |
if metric is not None: metric = metric.to('cuda') | |
if mask: | |
batch, _, h, w = img.shape | |
img = torch.cat([img, torch.ones(batch, 1, h, w, dtype=img.dtype, device=img.device)], dim=1) | |
return FunctionSoftsplat(img, flow, metric, mode) | |
def z_metric( | |
img0: torch.Tensor, | |
img1: torch.Tensor, | |
flow0to1: torch.Tensor, | |
flow1to0: torch.Tensor | |
) -> tuple[torch.Tensor, torch.Tensor]: | |
img0 = rgb_to_lab(img0[:,:3]) | |
img1 = rgb_to_lab(img1[:,:3]) | |
z1to0 = -0.1*(img1 - HalfWarper.backward_wrapping(img0, flow1to0)).norm(dim=1, keepdim=True) | |
z0to1 = -0.1*(img0 - HalfWarper.backward_wrapping(img1, flow0to1)).norm(dim=1, keepdim=True) | |
return z0to1, z1to0 | |
def forward( | |
self, | |
I0: torch.Tensor, | |
I1: torch.Tensor, | |
flow0to1: torch.Tensor, | |
flow1to0: torch.Tensor, | |
z0to1: torch.Tensor | None = None, | |
z1to0: torch.Tensor | None = None, | |
tau: float | None = None, | |
morph_kernel_size: int = 5, | |
mask: bool = True | |
) -> tuple[torch.Tensor, torch.Tensor]: | |
if z1to0 is None or z0to1 is None: | |
z0to1, z1to0 = self.z_metric(I0, I1, flow0to1, flow1to0) | |
if tau is not None: | |
flow0tot = tau*flow0to1 | |
flow1tot = (1 - tau)*flow1to0 | |
else: | |
flow0tot = flow0to1 | |
flow1tot = flow1to0 | |
# image warping | |
fw0to1 = HalfWarper.forward_warpping(I0, flow0tot, mode='softmax', metric=z0to1, mask=True) | |
fw1to0 = HalfWarper.forward_warpping(I1, flow1tot, mode='softmax', metric=z1to0, mask=True) | |
wrapped_image0tot = fw0to1[:,:-1] | |
wrapped_image1tot = fw1to0[:,:-1] | |
mask0tot = morph_open(fw0to1[:,-1:], k=morph_kernel_size) | |
mask1tot = morph_open(fw1to0[:,-1:], k=morph_kernel_size) | |
base0 = mask0tot*wrapped_image0tot + (1 - mask0tot)*wrapped_image1tot | |
base1 = mask1tot*wrapped_image1tot + (1 - mask1tot)*wrapped_image0tot | |
if mask: | |
base0 = torch.cat([base0, mask0tot], dim=1) | |
base1 = torch.cat([base1, mask1tot], dim=1) | |
return base0, base1 |