Update README and app.py for Web Search MCP Server: enhance documentation, improve usage instructions, and implement main content extraction with error handling.
Browse files
README.md
CHANGED
@@ -1,39 +1,148 @@
|
|
1 |
---
|
2 |
title: Websearch
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.36.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
## Prerequisites
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|---|---|---|
|
26 |
-
| API search | Serper’s Google‑News JSON is fast, cost‑effective and immune to Google’s bot‑blocking. | |
|
27 |
-
| Concurrency | `httpx.AsyncClient` + `asyncio.gather` gets 10 articles in < 2 s on typical broadband. | |
|
28 |
-
| Extraction | Trafilatura consistently tops accuracy charts for main‑content extraction and needs no browser or heavy ML models. | |
|
29 |
-
| Date parsing | `python‑dateutil` converts fuzzy strings (“16 hours ago”) into ISO YYYY‑MM‑DD so the LLM sees absolute dates. | |
|
30 |
-
| LLM‑friendly output | Markdown headings and horizontal rules make chunk boundaries explicit; hyperlinks preserved for optional citation. | |
|
31 |
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
* **Long‑content trimming** – if each article can exceed your LLM’s context window, pipe `body` through a sentence‑ranker or GPT‑based summariser before concatenation.
|
36 |
-
* **Paywalls / PDFs** – guard `extract_main_text` with fallback libraries (e.g. `readability‑lxml` or `pymupdf`) for unusual formats.
|
37 |
-
* **Rate‑limiting** – Serper free tier allows 100 req/day; wrap the call with exponential‑backoff on HTTP 429.
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Websearch
|
3 |
+
emoji: 🔎
|
4 |
colorFrom: red
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.36.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Web Search MCP Server
|
13 |
+
|
14 |
+
A Model Context Protocol (MCP) server that provides web search capabilities to LLMs, allowing them to fetch and extract content from recent news articles.
|
15 |
+
|
16 |
+
## Features
|
17 |
+
|
18 |
+
- **Real-time web search**: Search for recent news on any topic
|
19 |
+
- **Content extraction**: Automatically extracts main article content, removing ads and boilerplate
|
20 |
+
- **Rate limiting**: Built-in rate limiting (200 requests/hour) to prevent API abuse
|
21 |
+
- **Structured output**: Returns formatted content with metadata (title, source, date, URL)
|
22 |
+
- **Flexible results**: Control the number of results (1-20)
|
23 |
|
24 |
## Prerequisites
|
25 |
|
26 |
+
1. **Serper API Key**: Sign up at [serper.dev](https://serper.dev) to get your API key
|
27 |
+
2. **Python 3.8+**: Ensure you have Python installed
|
28 |
+
3. **MCP-compatible LLM client**: Such as Claude Desktop, Cursor, or any MCP-enabled application
|
29 |
+
|
30 |
+
## Installation
|
31 |
+
|
32 |
+
1. Clone or download this repository
|
33 |
+
2. Install dependencies:
|
34 |
+
```bash
|
35 |
+
pip install -r requirements.txt
|
36 |
+
```
|
37 |
+
Or install manually:
|
38 |
+
```bash
|
39 |
+
pip install "gradio[mcp]" httpx trafilatura python-dateutil limits
|
40 |
+
```
|
41 |
+
|
42 |
+
3. Set your Serper API key:
|
43 |
+
```bash
|
44 |
+
export SERPER_API_KEY="your-api-key-here"
|
45 |
+
```
|
46 |
+
|
47 |
+
## Usage
|
48 |
+
|
49 |
+
### Starting the MCP Server
|
50 |
+
|
51 |
+
```bash
|
52 |
+
python app_mcp.py
|
53 |
+
```
|
54 |
+
|
55 |
+
The server will start on `http://localhost:7860` with the MCP endpoint at:
|
56 |
+
```
|
57 |
+
http://localhost:7860/gradio_api/mcp/sse
|
58 |
+
```
|
59 |
+
|
60 |
+
### Connecting to LLM Clients
|
61 |
+
|
62 |
+
#### Claude Desktop
|
63 |
+
Add to your `claude_desktop_config.json`:
|
64 |
+
```json
|
65 |
+
{
|
66 |
+
"mcpServers": {
|
67 |
+
"web-search": {
|
68 |
+
"command": "python",
|
69 |
+
"args": ["/path/to/app_mcp.py"],
|
70 |
+
"env": {
|
71 |
+
"SERPER_API_KEY": "your-api-key-here"
|
72 |
+
}
|
73 |
+
}
|
74 |
+
}
|
75 |
+
}
|
76 |
+
```
|
77 |
+
|
78 |
+
#### Direct URL Connection
|
79 |
+
For clients that support URL-based MCP servers:
|
80 |
+
1. Start the server: `python app_mcp.py`
|
81 |
+
2. Connect to: `http://localhost:7860/gradio_api/mcp/sse`
|
82 |
+
|
83 |
+
## Tool Documentation
|
84 |
+
|
85 |
+
### `search_web` Function
|
86 |
+
|
87 |
+
**Purpose**: Search the web for recent news and extract article content.
|
88 |
+
|
89 |
+
**Parameters**:
|
90 |
+
- `query` (str, **REQUIRED**): The search query
|
91 |
+
- Examples: "OpenAI news", "climate change 2024", "python updates"
|
92 |
+
|
93 |
+
- `num_results` (int, **OPTIONAL**): Number of results to fetch
|
94 |
+
- Default: 4
|
95 |
+
- Range: 1-20
|
96 |
+
- More results provide more context but take longer
|
97 |
+
|
98 |
+
**Returns**: Formatted text containing:
|
99 |
+
- Summary of extraction results
|
100 |
+
- For each article:
|
101 |
+
- Title
|
102 |
+
- Source and date
|
103 |
+
- URL
|
104 |
+
- Extracted main content
|
105 |
+
|
106 |
+
**Example Usage in LLM**:
|
107 |
+
```
|
108 |
+
"Search for recent developments in artificial intelligence"
|
109 |
+
"Find 10 articles about climate change in 2024"
|
110 |
+
"Get news about Python programming language updates"
|
111 |
+
```
|
112 |
+
|
113 |
+
## Error Handling
|
114 |
+
|
115 |
+
The tool handles various error scenarios:
|
116 |
+
- Missing API key: Clear error message with setup instructions
|
117 |
+
- Rate limiting: Informs when limit is exceeded
|
118 |
+
- Failed extractions: Reports which articles couldn't be extracted
|
119 |
+
- Network errors: Graceful error messages
|
120 |
+
|
121 |
+
## Testing
|
122 |
|
123 |
+
You can test the server manually:
|
124 |
+
1. Open `http://localhost:7860` in your browser
|
125 |
+
2. Enter a search query
|
126 |
+
3. Adjust the number of results
|
127 |
+
4. Click "Search" to see the extracted content
|
128 |
|
129 |
+
## Tips for LLM Usage
|
130 |
|
131 |
+
1. **Be specific with queries**: More specific queries yield better results
|
132 |
+
2. **Adjust result count**: Use fewer results for quick searches, more for comprehensive research
|
133 |
+
3. **Check dates**: The tool shows article dates for temporal context
|
134 |
+
4. **Follow up**: Use the extracted content to ask follow-up questions
|
135 |
|
136 |
+
## Limitations
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
- Rate limited to 200 requests per hour
|
139 |
+
- Only searches news articles (not general web pages)
|
140 |
+
- Extraction quality depends on website structure
|
141 |
+
- Some websites may block automated access
|
142 |
|
143 |
+
## Troubleshooting
|
|
|
|
|
|
|
144 |
|
145 |
+
1. **"SERPER_API_KEY is not set"**: Ensure the environment variable is exported
|
146 |
+
2. **Rate limit errors**: Wait before making more requests
|
147 |
+
3. **No content extracted**: Some websites block scrapers; try different queries
|
148 |
+
4. **Connection errors**: Check your internet connection and firewall settings
|
app.py
CHANGED
@@ -1,123 +1,207 @@
|
|
1 |
"""
|
2 |
-
Web Search - Feed LLMs with fresh sources
|
3 |
-
|
4 |
|
5 |
Prerequisites
|
6 |
-------------
|
7 |
-
$ pip install gradio httpx trafilatura python-dateutil
|
8 |
|
9 |
Environment
|
10 |
-----------
|
11 |
-
export SERPER_API_KEY="YOUR
|
|
|
|
|
|
|
|
|
|
|
12 |
"""
|
13 |
|
14 |
-
import os
|
|
|
|
|
|
|
|
|
|
|
15 |
from dateutil import parser as dateparser
|
16 |
from limits import parse
|
17 |
from limits.aio.storage import MemoryStorage
|
18 |
from limits.aio.strategies import MovingWindowRateLimiter
|
19 |
-
from fastapi import FastAPI, Request, HTTPException
|
20 |
-
from fastapi.responses import JSONResponse
|
21 |
|
|
|
22 |
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
|
23 |
SERPER_ENDPOINT = "https://google.serper.dev/news"
|
24 |
HEADERS = {"X-API-KEY": SERPER_API_KEY, "Content-Type": "application/json"}
|
25 |
|
26 |
# Rate limiting
|
27 |
-
app = FastAPI()
|
28 |
storage = MemoryStorage()
|
29 |
limiter = MovingWindowRateLimiter(storage)
|
30 |
rate_limit = parse("200/hour")
|
31 |
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
resp = await client.post(SERPER_ENDPOINT, headers=HEADERS, json=payload)
|
47 |
-
resp.raise_for_status()
|
48 |
-
return resp.json()["news"]
|
49 |
-
|
50 |
-
|
51 |
-
### 2 ─ Concurrent HTML downloads ----------------------------------------------
|
52 |
-
async def fetch_html_many(urls: list[str]) -> list[dict]:
|
53 |
-
async with httpx.AsyncClient(timeout=20, follow_redirects=True) as client:
|
54 |
-
tasks = [client.get(u) for u in urls]
|
55 |
-
responses = await asyncio.gather(*tasks, return_exceptions=True)
|
56 |
-
html_pages = []
|
57 |
-
for r in responses:
|
58 |
-
if isinstance(r, Exception):
|
59 |
-
html_pages.append("") # keep positions aligned
|
60 |
-
else:
|
61 |
-
html_pages.append(r.text)
|
62 |
-
return html_pages
|
63 |
-
|
64 |
-
|
65 |
-
### 3 ─ Main‑content extraction -------------------------------------------------
|
66 |
-
def extract_main_text(html: str) -> str:
|
67 |
-
if not html:
|
68 |
-
return ""
|
69 |
-
# Trafilatura auto‑detects language, removes boilerplate & returns plain text.
|
70 |
-
return (
|
71 |
-
trafilatura.extract(html, include_formatting=False, include_comments=False)
|
72 |
-
or ""
|
73 |
-
)
|
74 |
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
-
except Exception:
|
93 |
-
date_iso = meta.get("date", "")
|
94 |
-
chunk = (
|
95 |
-
f"## {meta['title']}\n"
|
96 |
-
f"**Source:** {meta['source']} "
|
97 |
-
f"**Date:** {date_iso}\n"
|
98 |
-
f"{meta['link']}\n\n"
|
99 |
-
f"{body.strip()}\n"
|
100 |
-
)
|
101 |
-
chunks.append(chunk)
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
104 |
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
with gr.Blocks(title="WebSearch") as demo:
|
114 |
-
gr.Markdown("# 🔍 Web Search\n" "Feed LLMs with fresh sources.")
|
115 |
-
query = gr.Textbox(label="Query", placeholder='e.g. "apple inc"')
|
116 |
-
top_k = gr.Slider(1, 20, value=4, label="How many results?")
|
117 |
-
out = gr.Textbox(label="Extracted Context", lines=25)
|
118 |
-
run = gr.Button("Fetch")
|
119 |
-
run.click(handler, inputs=[query, top_k], outputs=out)
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
-
# Launch
|
123 |
-
|
|
|
|
1 |
"""
|
2 |
+
Web Search MCP Server - Feed LLMs with fresh sources
|
3 |
+
====================================================
|
4 |
|
5 |
Prerequisites
|
6 |
-------------
|
7 |
+
$ pip install "gradio[mcp]" httpx trafilatura python-dateutil limits
|
8 |
|
9 |
Environment
|
10 |
-----------
|
11 |
+
export SERPER_API_KEY="YOUR-KEY-HERE"
|
12 |
+
|
13 |
+
Usage
|
14 |
+
-----
|
15 |
+
python app_mcp.py
|
16 |
+
Then connect to: http://localhost:7860/gradio_api/mcp/sse
|
17 |
"""
|
18 |
|
19 |
+
import os
|
20 |
+
import asyncio
|
21 |
+
from typing import Optional
|
22 |
+
import httpx
|
23 |
+
import trafilatura
|
24 |
+
import gradio as gr
|
25 |
from dateutil import parser as dateparser
|
26 |
from limits import parse
|
27 |
from limits.aio.storage import MemoryStorage
|
28 |
from limits.aio.strategies import MovingWindowRateLimiter
|
|
|
|
|
29 |
|
30 |
+
# Configuration
|
31 |
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
|
32 |
SERPER_ENDPOINT = "https://google.serper.dev/news"
|
33 |
HEADERS = {"X-API-KEY": SERPER_API_KEY, "Content-Type": "application/json"}
|
34 |
|
35 |
# Rate limiting
|
|
|
36 |
storage = MemoryStorage()
|
37 |
limiter = MovingWindowRateLimiter(storage)
|
38 |
rate_limit = parse("200/hour")
|
39 |
|
40 |
|
41 |
+
async def search_web(query: str, num_results: Optional[int] = 4) -> str:
|
42 |
+
"""
|
43 |
+
Search the web for recent news and information, returning extracted content.
|
44 |
+
|
45 |
+
This tool searches for recent news articles related to your query and extracts
|
46 |
+
the main content from each article, providing you with fresh, relevant information
|
47 |
+
from the web.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
query (str): The search query. This is REQUIRED. Examples: "apple inc earnings",
|
51 |
+
"climate change 2024", "AI developments"
|
52 |
+
num_results (int): Number of results to fetch. This is OPTIONAL. Default is 4.
|
53 |
+
Range: 1-20. More results = more context but longer response time.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
Returns:
|
56 |
+
str: Formatted text containing extracted article content with metadata (title,
|
57 |
+
source, date, URL, and main text) for each result, separated by dividers.
|
58 |
+
Returns error message if API key is missing or search fails.
|
59 |
|
60 |
+
Examples:
|
61 |
+
- search_web("OpenAI news", 5) - Get 5 recent news articles about OpenAI
|
62 |
+
- search_web("python 3.13 features") - Get 4 articles about Python 3.13
|
63 |
+
- search_web("stock market today", 10) - Get 10 articles about today's market
|
64 |
+
"""
|
65 |
+
if not SERPER_API_KEY:
|
66 |
+
return "Error: SERPER_API_KEY environment variable is not set. Please set it to use this tool."
|
67 |
+
|
68 |
+
# Validate and constrain num_results
|
69 |
+
if num_results is None:
|
70 |
+
num_results = 4
|
71 |
+
num_results = max(1, min(20, num_results))
|
72 |
+
|
73 |
+
try:
|
74 |
+
# Check rate limit
|
75 |
+
if not await limiter.hit(rate_limit, "global"):
|
76 |
+
return "Error: Rate limit exceeded. Please try again later (limit: 200 requests per hour)."
|
77 |
+
|
78 |
+
# Search for news
|
79 |
+
payload = {"q": query, "type": "news", "num": num_results, "page": 1}
|
80 |
+
async with httpx.AsyncClient(timeout=15) as client:
|
81 |
+
resp = await client.post(SERPER_ENDPOINT, headers=HEADERS, json=payload)
|
82 |
+
|
83 |
+
if resp.status_code != 200:
|
84 |
+
return f"Error: Search API returned status {resp.status_code}. Please check your API key and try again."
|
85 |
+
|
86 |
+
news_items = resp.json().get("news", [])
|
87 |
+
if not news_items:
|
88 |
+
return (
|
89 |
+
f"No results found for query: '{query}'. Try a different search term."
|
90 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
# Fetch HTML content concurrently
|
93 |
+
urls = [n["link"] for n in news_items]
|
94 |
+
async with httpx.AsyncClient(timeout=20, follow_redirects=True) as client:
|
95 |
+
tasks = [client.get(u) for u in urls]
|
96 |
+
responses = await asyncio.gather(*tasks, return_exceptions=True)
|
97 |
|
98 |
+
# Extract and format content
|
99 |
+
chunks = []
|
100 |
+
successful_extractions = 0
|
101 |
|
102 |
+
for meta, response in zip(news_items, responses):
|
103 |
+
if isinstance(response, Exception):
|
104 |
+
continue
|
105 |
+
|
106 |
+
# Extract main text content
|
107 |
+
body = trafilatura.extract(
|
108 |
+
response.text, include_formatting=False, include_comments=False
|
109 |
+
)
|
110 |
+
|
111 |
+
if not body:
|
112 |
+
continue
|
113 |
+
|
114 |
+
successful_extractions += 1
|
115 |
+
|
116 |
+
# Parse and format date
|
117 |
+
try:
|
118 |
+
date_iso = dateparser.parse(meta.get("date", ""), fuzzy=True).strftime(
|
119 |
+
"%Y-%m-%d"
|
120 |
+
)
|
121 |
+
except Exception:
|
122 |
+
date_iso = meta.get("date", "Unknown")
|
123 |
+
|
124 |
+
# Format the chunk
|
125 |
+
chunk = (
|
126 |
+
f"## {meta['title']}\n"
|
127 |
+
f"**Source:** {meta['source']} "
|
128 |
+
f"**Date:** {date_iso}\n"
|
129 |
+
f"**URL:** {meta['link']}\n\n"
|
130 |
+
f"{body.strip()}\n"
|
131 |
+
)
|
132 |
+
chunks.append(chunk)
|
133 |
+
|
134 |
+
if not chunks:
|
135 |
+
return f"Found {len(news_items)} results for '{query}', but couldn't extract readable content from any of them. The websites might be blocking automated access."
|
136 |
+
|
137 |
+
result = "\n---\n".join(chunks)
|
138 |
+
summary = f"Successfully extracted content from {successful_extractions} out of {len(news_items)} search results for query: '{query}'\n\n---\n\n"
|
139 |
|
140 |
+
return summary + result
|
141 |
+
|
142 |
+
except Exception as e:
|
143 |
+
return f"Error occurred while searching: {str(e)}. Please try again or check your query."
|
144 |
+
|
145 |
+
|
146 |
+
# Create Gradio interface
|
147 |
+
with gr.Blocks(title="Web Search MCP Server") as demo:
|
148 |
+
gr.Markdown(
|
149 |
+
"""
|
150 |
+
# 🔍 Web Search MCP Server
|
151 |
+
|
152 |
+
This MCP server provides web search capabilities to LLMs. It searches for recent news
|
153 |
+
and extracts the main content from articles.
|
154 |
+
|
155 |
+
**Note:** This interface is primarily designed for MCP tool usage by LLMs, but you can
|
156 |
+
also test it manually below.
|
157 |
+
"""
|
158 |
+
)
|
159 |
+
|
160 |
+
with gr.Row():
|
161 |
+
query_input = gr.Textbox(
|
162 |
+
label="Search Query",
|
163 |
+
placeholder='e.g. "OpenAI news", "climate change 2024", "AI developments"',
|
164 |
+
info="Required: Enter your search query",
|
165 |
+
)
|
166 |
+
num_results_input = gr.Slider(
|
167 |
+
minimum=1,
|
168 |
+
maximum=20,
|
169 |
+
value=4,
|
170 |
+
step=1,
|
171 |
+
label="Number of Results",
|
172 |
+
info="Optional: How many articles to fetch (default: 4)",
|
173 |
+
)
|
174 |
+
|
175 |
+
output = gr.Textbox(
|
176 |
+
label="Extracted Content",
|
177 |
+
lines=25,
|
178 |
+
max_lines=50,
|
179 |
+
info="The extracted article content will appear here",
|
180 |
+
)
|
181 |
+
|
182 |
+
search_button = gr.Button("Search", variant="primary")
|
183 |
+
|
184 |
+
# Add examples
|
185 |
+
gr.Examples(
|
186 |
+
examples=[
|
187 |
+
["OpenAI GPT-5 news", 5],
|
188 |
+
["climate change 2024", 4],
|
189 |
+
["artificial intelligence breakthroughs", 8],
|
190 |
+
["stock market today", 6],
|
191 |
+
["python programming updates", 4],
|
192 |
+
],
|
193 |
+
inputs=[query_input, num_results_input],
|
194 |
+
outputs=output,
|
195 |
+
fn=search_web,
|
196 |
+
cache_examples=False,
|
197 |
+
)
|
198 |
+
|
199 |
+
search_button.click(
|
200 |
+
fn=search_web, inputs=[query_input, num_results_input], outputs=output
|
201 |
+
)
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
if __name__ == "__main__":
|
205 |
+
# Launch with MCP server enabled
|
206 |
+
# The MCP endpoint will be available at: http://localhost:7860/gradio_api/mcp/sse
|
207 |
+
demo.launch(mcp_server=True, show_api=True)
|