Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
import torch
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
5 |
|
6 |
-
# Load T5 paraphrase model
|
7 |
model_name = "Vamsi/T5_Paraphrase_Paws"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
10 |
|
11 |
-
# Move model to CPU (remove if using GPU)
|
12 |
-
model.to("cpu")
|
13 |
|
14 |
-
# Initialize paraphrase pipeline
|
15 |
paraphrase_pipeline = pipeline(
|
16 |
"text2text-generation",
|
17 |
model=model,
|
@@ -23,31 +22,38 @@ def split_sentences(text):
|
|
23 |
"""Split text into sentences using regex (faster than nltk)."""
|
24 |
return re.split(r'(?<=[.!?])\s+', text.strip())
|
25 |
|
26 |
-
def paraphrase_text(text):
|
27 |
-
"""Paraphrases input text while maintaining sentence structure."""
|
28 |
if not text.strip():
|
29 |
return "⚠️ Please enter some text to paraphrase."
|
30 |
|
31 |
sentences = split_sentences(text)
|
32 |
|
33 |
-
# Apply T5 paraphrasing
|
34 |
-
paraphrased_results = paraphrase_pipeline
|
35 |
[f"paraphrase: {sentence} </s>" for sentence in sentences if sentence],
|
36 |
-
max_length=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
|
|
|
39 |
paraphrased_sentences = [result['generated_text'] for result in paraphrased_results]
|
40 |
return " ".join(paraphrased_sentences)
|
41 |
|
42 |
-
# Define Gradio Interface
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
)
|
51 |
|
52 |
if __name__ == "__main__":
|
53 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
import torch
|
4 |
+
import asyncio
|
5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
6 |
|
7 |
+
# Load T5 paraphrase model
|
8 |
model_name = "Vamsi/T5_Paraphrase_Paws"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
11 |
|
|
|
|
|
12 |
|
13 |
+
# Initialize paraphrase pipeline
|
14 |
paraphrase_pipeline = pipeline(
|
15 |
"text2text-generation",
|
16 |
model=model,
|
|
|
22 |
"""Split text into sentences using regex (faster than nltk)."""
|
23 |
return re.split(r'(?<=[.!?])\s+', text.strip())
|
24 |
|
25 |
+
async def paraphrase_text(text):
|
26 |
+
"""Paraphrases input text while maintaining sentence structure asynchronously."""
|
27 |
if not text.strip():
|
28 |
return "⚠️ Please enter some text to paraphrase."
|
29 |
|
30 |
sentences = split_sentences(text)
|
31 |
|
32 |
+
# Apply T5 paraphrasing with optimized settings
|
33 |
+
paraphrased_results = await asyncio.to_thread(paraphrase_pipeline,
|
34 |
[f"paraphrase: {sentence} </s>" for sentence in sentences if sentence],
|
35 |
+
max_length=80,
|
36 |
+
do_sample=True,
|
37 |
+
temperature=0.7,
|
38 |
+
top_p=0.85,
|
39 |
+
top_k=50,
|
40 |
+
repetition_penalty=1.2,
|
41 |
+
num_return_sequences=1,
|
42 |
+
batch_size=8
|
43 |
)
|
44 |
|
45 |
+
# Extract and join paraphrased sentences
|
46 |
paraphrased_sentences = [result['generated_text'] for result in paraphrased_results]
|
47 |
return " ".join(paraphrased_sentences)
|
48 |
|
49 |
+
# Define Gradio Interface (Disable queueing)
|
50 |
+
with gr.Blocks() as demo:
|
51 |
+
gr.Markdown("# 🚀 Fast & Parallel T5 Paraphraser")
|
52 |
+
input_box = gr.Textbox(label="Enter text", placeholder="Type your text to paraphrase...", lines=10)
|
53 |
+
output_box = gr.Textbox(label="Paraphrased Text", lines=10)
|
54 |
+
button = gr.Button("Paraphrase")
|
55 |
+
|
56 |
+
button.click(paraphrase_text, inputs=input_box, outputs=output_box)
|
|
|
57 |
|
58 |
if __name__ == "__main__":
|
59 |
+
demo.launch(share=True, queue=False) # Disable queueing
|