Spaces:
Sleeping
Sleeping
from transformers import DetrImageProcessor, DetrForObjectDetection, TrOCRProcessor, VisionEncoderDecoderModel | |
import cv2 | |
from PIL import Image, ImageDraw | |
import torch | |
import streamlit as st | |
# Load Hugging Face Models | |
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") | |
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1") | |
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1") | |
# Detect license plates | |
def detect_license_plate(frame): | |
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
inputs = detr_processor(images=pil_image, return_tensors="pt") | |
outputs = detr_model(**inputs) | |
target_sizes = torch.tensor([pil_image.size[::-1]]) | |
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9) | |
return results[0]["boxes"], pil_image | |
# Recognize text | |
def recognize_text_from_plate(cropped_plate): | |
inputs = trocr_processor(images=cropped_plate, return_tensors="pt") | |
outputs = trocr_model.generate(**inputs) | |
return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
# Streamlit configuration | |
st.title("Real-Time Car Number Plate Recognition") | |
st.text("This application uses Hugging Face Transformers to detect and recognize car plates.") | |
# Authorized car database | |
authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"} | |
# Verification function | |
def verify_plate(plate_text): | |
if plate_text in authorized_cars: | |
return f"β Access Granted: {plate_text}" | |
else: | |
return f"β Access Denied: {plate_text}" | |
# Live video feed and processing | |
def live_feed(): | |
cap = cv2.VideoCapture(0) # Open the webcam | |
stframe = st.empty() # Streamlit frame for displaying video | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Detect license plates | |
boxes, pil_image = detect_license_plate(frame) | |
draw = ImageDraw.Draw(pil_image) | |
recognized_plates = [] | |
for box in boxes: | |
# Crop the detected plate | |
cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3])) | |
# Recognize text | |
plate_text = recognize_text_from_plate(cropped_plate) | |
recognized_plates.append(plate_text) | |
# Draw bounding box and text | |
draw.rectangle(box.tolist(), outline="red", width=2) | |
draw.text((box[0], box[1]), plate_text, fill="red") | |
# Convert PIL image back to OpenCV format | |
processed_frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) | |
# Stream the video to Streamlit | |
stframe.image(processed_frame, channels="BGR") | |
# Show results | |
for plate_text in recognized_plates: | |
st.write(verify_plate(plate_text)) | |
cap.release() | |
cv2.destroyAllWindows() | |
if st.button("Start Camera"): | |
live_feed() | |