|
import os |
|
import logging |
|
import random |
|
import pickle |
|
import torch |
|
from transformers import BertForSequenceClassification, BertTokenizerFast |
|
from huggingface_hub import hf_hub_download |
|
import gradio as gr |
|
|
|
|
|
MODEL_NAME = "vinapatri/intent-classification-jkn-kis" |
|
CONFIDENCE_THRESHOLD = 0.6 |
|
|
|
|
|
def load_model_components(): |
|
model = BertForSequenceClassification.from_pretrained(MODEL_NAME) |
|
tokenizer = BertTokenizerFast.from_pretrained(MODEL_NAME) |
|
|
|
label_encoder_path = hf_hub_download(repo_id=MODEL_NAME, filename="label_encoder.pkl") |
|
responses_path = hf_hub_download(repo_id=MODEL_NAME, filename="tag_to_responses.pkl") |
|
|
|
with open(label_encoder_path, "rb") as f: |
|
le = pickle.load(f) |
|
|
|
with open(responses_path, "rb") as f: |
|
tag_to_responses = pickle.load(f) |
|
|
|
|
|
if 'unknown' not in tag_to_responses: |
|
tag_to_responses['unknown'] = [ |
|
"Maaf, saya tidak mengerti pertanyaan Anda", |
|
"Saya belum bisa menjawab pertanyaan tersebut" |
|
] |
|
|
|
return model, tokenizer, le, tag_to_responses |
|
|
|
model, tokenizer, le, tag_to_responses = load_model_components() |
|
|
|
def predict_intent(text): |
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
probabilities = torch.softmax(outputs.logits, dim=1)[0] |
|
confidence, predicted_class_id = torch.max(probabilities, 0) |
|
confidence = confidence.item() |
|
|
|
|
|
if confidence < CONFIDENCE_THRESHOLD: |
|
return "unknown" |
|
|
|
tag = le.inverse_transform([predicted_class_id.item()])[0] |
|
return tag |
|
|
|
def get_response(user_input): |
|
tag = predict_intent(user_input) |
|
responses = tag_to_responses.get(tag, tag_to_responses['unknown']) |
|
return random.choice(responses) |
|
|
|
|
|
def chat_interface(message, history): |
|
return get_response(message) |
|
|
|
gradio_app = gr.ChatInterface( |
|
fn=chat_interface, |
|
title="JKN-KIS Intent Classification", |
|
description="Bot untuk klasifikasi intent terkait JKN-KIS", |
|
examples=[ |
|
"Bagaimana cara daftar Mobile JKN?", |
|
"Cara buat surat rujukan BPJS secara online?", |
|
"Kenapa OTP Mobile JKN tidak masuk?" |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
logging.basicConfig( |
|
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", |
|
level=logging.INFO |
|
) |
|
gradio_app.launch(server_name="0.0.0.0", server_port=7860) |