Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,582 Bytes
69defc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import json
import pretty_midi
import pypianoroll
import hdf5_getters
from tqdm import tqdm
import os
import concurrent.futures
import collections
import utils
from glob import glob
import pandas as pd
import csv
from copy import deepcopy
"""
Written by Serkan Sulun
Creates labels for Lakh MIDI (or pianoroll) dataset.
Labels include low-level MIDI features such as tempo, note density and number of MIDI files.
They also include high-level features obtained from Spotify Developer API, such as valence, energy, etc.
See utils.py and fill in the variables client_id and client_secret.
When the user quota is exceeded, Spotify blocks access and the script gets stuck.
In that case, you may need to re-run the script some time later,
or use a different account with different client ID and secret.
"""
def run_parallel(func, my_iter):
# Parallel processing visualized with tqdm
with concurrent.futures.ProcessPoolExecutor() as executor:
results = list(tqdm(executor.map(func, my_iter), total=len(my_iter)))
return results
write = False
redo = True
main_output_dir = "../../data_files/features"
os.makedirs(main_output_dir, exist_ok=True)
match_scores_path = "../../data_files/match_scores.json"
msd_summary_path = "../../data_files/msd_summary_file.h5"
echonest_folder_path = "../../data_files/millionsongdataset_echonest"
use_pianoroll_dataset = True
if use_pianoroll_dataset:
midi_dataset_path = "../../data_files/lpd_full/lpd/lpd_full"
extension = ".npz"
output_dir = os.path.join(main_output_dir, "pianoroll")
else:
midi_dataset_path = "lmd_full"
extension = ".mid"
output_dir = os.path.join(main_output_dir, "midi")
os.makedirs(output_dir, exist_ok=True)
### PART I: Map track_ids (in midi dataset) to Spotify features
### 1- Create mappings track_id (in midi dataset) -> metadata (in Echonest)
output_path = os.path.join(output_dir, "trackid_to_songid.json")
with open(match_scores_path, "r") as f:
match_scores = json.load(f)
track_ids = sorted(list(match_scores.keys()))
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
trackid_to_songid = json.load(f)
else:
h5_msd = hdf5_getters.open_h5_file_read(msd_summary_path)
n_msd = hdf5_getters.get_num_songs(h5_msd)
trackid_to_songid = {}
print("Adding metadata to each track in Lakh dataset")
for i in tqdm(range(n_msd)):
track_id = hdf5_getters.get_track_id(h5_msd, i).decode("utf-8")
if track_id in track_ids:
# get data from MSD
song_id = hdf5_getters.get_song_id(h5_msd, i).decode("utf-8")
artist = hdf5_getters.get_artist_name(h5_msd, i).decode("utf-8")
title = hdf5_getters.get_title(h5_msd, i).decode("utf-8")
release = hdf5_getters.get_release(h5_msd, i).decode("utf-8")
trackid_to_songid[track_id] = {"song_id": song_id,"title": title,
"artist": artist, "release": release}
# sort
trackid_to_songid = collections.OrderedDict(sorted(trackid_to_songid.items()))
if write:
with open(output_path, "w") as f:
json.dump(trackid_to_songid, f, indent=4)
print(f"Output saved to {output_path}")
### 2- Create mappings metadata (in Echonest) -> Spotify IDs
output_path = os.path.join(output_dir, "songid_to_spotify.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
songid_to_spotify = json.load(f)
else:
song_ids = sorted([val["song_id"] for val in trackid_to_songid.values()])
songid_to_spotify = {}
print("Mapping Echonest song IDs to Spotify song IDs")
for song_id in tqdm(song_ids):
file_path = os.path.join(echonest_folder_path, song_id[2:4], song_id + ".json")
spotify_ids = utils.get_spotify_ids(file_path)
songid_to_spotify[song_id] = spotify_ids
if write:
with open(output_path, "w") as f:
json.dump(songid_to_spotify, f, indent=4)
print(f"Output saved to {output_path}")
### 3- Merge and add Spotify features
output_path = os.path.join(output_dir, "trackid_to_spotify_features.json")
# When user quota is exceeded, Spotify blocks access and the script gets stuck.
# In that case, you may need to re-run the script some time later,
# or use a different account with different client ID and secret.
# So we keep an incomplete csv file, so that we can continue later from where we left.
output_path_incomplete = os.path.join(output_dir, "incomplete_trackid_to_spotify_features.csv")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
trackid_to_spotify_features = json.load(f)
else:
fieldnames = ["track_id", "song_id", "title", "artist", "release",
"spotify_id", "spotify_title", "spotify_artist", "spotify_album", "spotify_audio_features"]
data_to_process = deepcopy(trackid_to_songid)
write_header = True
if os.path.exists(output_path_incomplete):
# Continue from where we've left
data_already_processed = utils.read_csv(output_path_incomplete)
track_ids_already_processed = [entry["track_id"] for entry in data_already_processed]
data_to_process = {key: value for key, value in data_to_process.items() if key not in track_ids_already_processed}
write_header = False
with open(output_path_incomplete, "a") as f_out:
csv_writer = csv.DictWriter(f_out, fieldnames=fieldnames)
if write_header:
csv_writer.writeheader()
print("Adding Spotify features")
for track_id, data in tqdm(data_to_process.items()):
data["track_id"] = track_id
album = data["release"]
spotify_ids = songid_to_spotify[data["song_id"]]
if spotify_ids == []:
# use metadata to search spotify
best_spotify_track = utils.search_spotify_flexible(data["title"], data["artist"], data["release"])
else:
spotify_tracks = utils.get_spotify_tracks(spotify_ids)
if spotify_tracks == None:
for key in ["id", "title", "artist", "album", "audio_features"]:
data["spotify_" + key] = None
elif len(spotify_tracks) > 1:
# find best spotify id by comparing album names
best_match_score = 0
best_match_ind = 0
for i, track in enumerate(spotify_tracks):
if track is not None:
spotify_album = track["album"]["name"] if track is not None else ""
match_score = utils.matching_strings_flexible(album, spotify_album)
if match_score > best_match_score:
best_match_score = match_score
best_match_ind = i
best_spotify_track = spotify_tracks[best_match_ind]
else:
best_spotify_track = spotify_tracks[0]
if best_spotify_track is not None:
spotify_id = best_spotify_track["uri"].split(":")[-1]
spotify_audio_features = utils.get_spotify_features(spotify_id)[0]
# if spotify_audio_features["valence"] == 0.0:
# # A large portion of files have 0.0 valence, although they are NaNs
# spotify_audio_features["valence"] = float("nan")
spotify_artists = ", ".join([artist["name"] for artist in best_spotify_track["artists"]])
data["spotify_id"] = spotify_id
data["spotify_title"] = best_spotify_track['name']
data["spotify_artist"] = spotify_artists
data["spotify_album"] = best_spotify_track["album"]["name"]
data["spotify_audio_features"] = spotify_audio_features
else:
for key in ["id", "title", "artist", "album", "audio_features"]:
data["spotify_" + key] = None
csv_writer.writerow(data)
# Now write final data to json
trackid_to_spotify_features_list = utils.read_csv(output_path_incomplete)
trackid_to_spotify_features = {}
# unlike json, csv doesnt support dict within dict, so convert it to dict manually
for item in trackid_to_spotify_features_list:
spotify_audio_features = item["spotify_audio_features"]
if spotify_audio_features != "":
spotify_audio_features = eval(spotify_audio_features)
item["spotify_audio_features"] = spotify_audio_features
track_id = deepcopy(item["track_id"])
del item["track_id"]
trackid_to_spotify_features[track_id] = item
if write:
with open(output_path, "w") as f:
json.dump(trackid_to_spotify_features, f, indent=4)
print(f"Output saved to {output_path}")
### PART II: Dealing with symbolic music data
### 4- Revert matching scores
""" Matched data has the format: track_ID -> midi_file
where multiple tracks could be mapped to a single midi file.
We want to revert this mapping and then keep unique midi files
Revert match scores file to have mapping midi_file -> track_ID
"""
output_path = os.path.join(output_dir, "match_scores_reverse.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
match_scores_reversed = json.load(f)
else:
with open(match_scores_path, "r") as f:
in_data = json.load(f)
match_scores_reversed = {}
print("Reversing match scores.")
for track_id, matching in tqdm(in_data.items()):
for file_, score in matching.items():
if file_ not in match_scores_reversed.keys():
match_scores_reversed[file_] = {track_id: score}
else:
match_scores_reversed[file_][track_id] = score
# order match scores
for k in match_scores_reversed.keys():
match_scores_reversed[k] = collections.OrderedDict(sorted(match_scores_reversed[k].items(), reverse=True, key=lambda x: x[-1]))
# order filenames
match_scores_reversed = collections.OrderedDict(sorted(match_scores_reversed.items(), key=lambda x: x[0]))
if write:
with open(output_path, "w") as f:
json.dump(match_scores_reversed, f, indent=4)
print(f"Output saved to {output_path}")
# 5- Filter match scores to only keep best match
output_path = os.path.join(output_dir, "best_match_scores.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
best_match_scores_reversed = json.load(f)
else:
best_match_scores_reversed = {}
print("Selecting best matching tracks.")
for midi_file, match in tqdm(match_scores_reversed.items()):
best_match_scores_reversed[midi_file] = list(match.items())[0]
if write:
with open(output_path, "w") as f:
json.dump(best_match_scores_reversed, f, indent=4)
print(f"Output saved to {output_path}")
### 6- Filter unique midis
"""LMD was created by creating hashes for the entire files
and then keeping files with unique hashes.
However, some files' musical content are the same, and only their metadata are different.
So we hash the content (pianoroll array), and further filter out the unique ones."""
# Create hashes for midis
output_path = os.path.join(output_dir, "hashes.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
midi_file_to_hash = json.load(f)
else:
def get_hash_and_file(path):
hash_ = utils.get_hash(path)
file_ = os.path.basename(path)
file_ = file_[:-4]
return [file_, hash_]
file_paths = sorted(glob(midi_dataset_path + "/**/*" + extension, recursive=True))
assert len(file_paths) > 0, f"No MIDI files found at {midi_dataset_path}"
print("Getting hashes for MIDIs.")
midi_file_to_hash = run_parallel(get_hash_and_file, file_paths)
midi_file_to_hash = sorted(midi_file_to_hash, key=lambda x:x[0])
midi_file_to_hash = dict(midi_file_to_hash)
if write:
with open(output_path, "w") as f:
json.dump(midi_file_to_hash, f, indent=4)
print(f"Output saved to {output_path}")
# also do the reverse hash -> midi
output_path = os.path.join(output_dir, "unique_files.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
midi_files_unique = json.load(f)
else:
hash_to_midi_file = {}
for midi_file, hash in midi_file_to_hash.items():
try:
best_match_score = best_match_scores_reversed[midi_file][1]
except:
best_match_score = 0
if hash in hash_to_midi_file.keys():
hash_to_midi_file[hash].append((midi_file, best_match_score))
else:
hash_to_midi_file[hash] = [(midi_file, best_match_score)]
midi_files_unique = []
# Get unique midis (with highest match score)
print("Getting unique MIDIs.")
for hash, midi_files_and_match_scores in hash_to_midi_file.items():
if hash != "empty_pianoroll":
midi_files_and_match_scores = sorted(midi_files_and_match_scores, key=lambda x: x[1], reverse=True)
midi_files_unique.append(midi_files_and_match_scores[0][0])
if write:
with open(output_path, "w") as f:
json.dump(midi_files_unique, f, indent=4)
print(f"Output saved to {output_path}")
# create unique matched midis list
midi_files_matched = list(match_scores_reversed.keys())
output_path = os.path.join(output_dir, "midis_matched_unique.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
midi_files_matched_unique = json.load(f)
else:
print("Getting unique matched MIDIs.")
midi_files_matched_unique = sorted(list(set(midi_files_matched).intersection(midi_files_unique)))
if write:
with open(output_path, "w") as f:
json.dump(midi_files_matched_unique, f, indent=4)
print(f"Output saved to {output_path}")
# create unique unmatched midis list
output_path = os.path.join(output_dir, "midis_unmatched_unique.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
midi_files_unmatched_unique = json.load(f)
else:
print("Getting unique unmatched MIDIs.")
midi_files_unmatched_unique = sorted(list(set(midi_files_unique) - set(midi_files_matched_unique)))
if write:
with open(output_path, "w") as f:
json.dump(midi_files_unmatched_unique, f, indent=4)
print(f"Output saved to {output_path}")
### 6- Create mappings: midi -> best matching track ID, spotify features
output_path = os.path.join(output_dir, "spotify_features.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
midi_file_to_spotify_features = json.load(f)
else:
midi_file_to_spotify_features = {}
print("Adding Spotify for matched unique MIDIs.")
for pr in tqdm(midi_files_matched_unique):
sample_data = {}
sample_data["track_id"], sample_data["match_score"] = best_match_scores_reversed[pr]
metadata_and_spotify = trackid_to_spotify_features[sample_data["track_id"]]
sample_data.update(metadata_and_spotify)
midi_file_to_spotify_features[pr] = sample_data
if write:
with open(output_path, "w") as f:
json.dump(midi_file_to_spotify_features, f, indent=4)
print(f"Output saved to {output_path}")
### 7- For all midis, get low level features
# (tempo, note density, number of instruments)
output_path = os.path.join(output_dir, "midi_features.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
midi_file_to_midi_features = json.load(f)
else:
def get_midi_features(midi_file):
midi_path = os.path.join(midi_dataset_path, midi_file[0], midi_file + extension)
if use_pianoroll_dataset:
mid = pypianoroll.load(midi_path).to_pretty_midi()
else:
mid = pretty_midi.PrettyMIDI(midi_path)
note_density = utils.get_note_density(mid)
tempo = utils.get_tempo(mid)
n_instruments = utils.get_n_instruments(mid)
duration = mid.get_end_time()
midi_features = {
"note_density": note_density,
"tempo": tempo,
"n_instruments": n_instruments,
"duration": duration,
}
return [midi_file, midi_features]
print("Getting low-level MIDI features")
midi_file_to_midi_features = run_parallel(get_midi_features, midi_files_unique)
midi_file_to_midi_features = dict(midi_file_to_midi_features)
if write:
with open(output_path, "w") as f:
json.dump(midi_file_to_midi_features, f, indent=4)
print(f"Output saved to {output_path}")
### 8- Merge MIDI features and matched (Spotify) features
output_path = os.path.join(output_dir, "full_dataset_features.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
midi_file_to_merged_features = json.load(f)
else:
midi_file_to_merged_features = {}
print("Merging MIDI features and Spotify features for full dataset.")
for midi_file in tqdm(midi_file_to_midi_features.keys()):
midi_file_to_merged_features[midi_file] = {}
midi_file_to_merged_features[midi_file]["midi_features"] = midi_file_to_midi_features[midi_file]
if midi_file in midi_file_to_spotify_features.keys():
matched_features = midi_file_to_spotify_features[midi_file]
else:
matched_features = {}
midi_file_to_merged_features[midi_file]["matched_features"] = matched_features
if write:
with open(output_path, "w") as f:
json.dump(midi_file_to_merged_features, f, indent=4)
print(f"Output saved to {output_path}")
### Do the same for matched dataset
output_path = os.path.join(output_dir, "matched_dataset_features.json")
if os.path.exists(output_path) and not redo:
with open(output_path, "r") as f:
matched_midi_file_to_merged_features = json.load(f)
else:
print("Merging MIDI features and Spotify features for the matched dataset.")
matched_midi_file_to_merged_features = \
{file_: midi_file_to_merged_features[file_] for file_ in tqdm(midi_files_matched_unique)}
if write:
with open(output_path, "w") as f:
json.dump(matched_midi_file_to_merged_features, f, indent=4)
print(f"Output saved to {output_path}")
### PART III: Constructing training dataset
### 9- Summarize matched dataset features by only taking valence and note densities per instrument,
# number of instruments, durations, is_matched
output_path = os.path.join(output_dir, "full_dataset_features_summarized.csv")
if not os.path.exists(output_path) or redo:
print("Constructing training dataset (final file)")
dataset_summarized = []
for midi_file, features in tqdm(midi_file_to_merged_features.items()):
midi_features = features["midi_features"]
n_instruments = midi_features["n_instruments"]
note_density_per_instrument = midi_features["note_density"] / n_instruments
matched_features = features["matched_features"]
if matched_features == {}:
is_matched = False
valence = float("nan")
else:
is_matched = True
spotify_audio_features = matched_features["spotify_audio_features"]
if spotify_audio_features is None or spotify_audio_features == "":
valence = float("nan")
else:
if spotify_audio_features["valence"] == 0.0:
# An unusual number of samples have a valence of 0.0
# which is possibly due to an error. Feel free to comment out.
valence = float("nan")
else:
valence = spotify_audio_features["valence"]
dataset_summarized.append({
"file": midi_file,
"is_matched": is_matched,
"n_instruments": n_instruments,
"note_density_per_instrument": note_density_per_instrument,
"valence": valence
})
dataset_summarized = pd.DataFrame(dataset_summarized)
if write:
dataset_summarized.to_csv(output_path, index=False)
print(f"Output saved to {output_path}") |