Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,481 Bytes
69defc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import pypianoroll
from operator import attrgetter
import torch
from copy import deepcopy
import numpy as np
# Forward processing. (Midi to indices)
def read_pianoroll(fp, return_tempo=False):
# Reads pianoroll file and converts to PrettyMidi
pr = pypianoroll.load(fp)
mid = pr.to_pretty_midi()
if return_tempo:
tempo = np.mean(pr.tempo)
return mid, tempo
else:
return mid
def trim_midi(mid_orig, start, end, strict=True):
"""Trims midi file
Args:
mid (PrettyMidi): input midi file
start (float): start time
end (float): end time
strict (bool, optional):
If false, includes notes that starts earlier than start time,
and ends later than start time. Or ends later than end time,
but starts earlier than end time. The start and end times
are readjusted so they fit into the given boundaries.
Defaults to True.
Returns:
(PrettyMidi): Trimmed output MIDI.
"""
eps = 1e-3
mid = deepcopy(mid_orig)
for ins in mid.instruments:
if strict:
ins.notes = [note for note in ins.notes if note.start >= start and note.end <= end]
else:
ins.notes = [note for note in ins.notes \
if note.end > start + eps and note.start < end - eps]
for note in ins.notes:
if not strict:
# readjustment
note.start = max(start, note.start)
note.end = min(end, note.end)
# Make the excerpt start at time zero
note.start -= start
note.end -= start
# Filter out empty tracks
mid.instruments = [ins for ins in mid.instruments if ins.notes]
return mid
def mid_to_timed_tuples(music, event_sym2idx, min_pitch: int = 21, max_pitch: int = 108):
# for sorting (though not absolutely necessary)
on_off_priority = ["ON", "OFF"]
ins_priority = ["DRUMS", "BASS", "GUITAR", "PIANO", "STRINGS"]
on_off_priority = {val: i for i, val in enumerate(on_off_priority)}
ins_priority = {val: i for i, val in enumerate(ins_priority)}
# Add instrument info to notes
for i, track in enumerate(music.instruments):
for note in track.notes:
note.instrument = track.name
# Collect notes
notes = []
for track in music.instruments:
notes.extend(track.notes)
# Raise an error if no notes is found
if not notes:
raise RuntimeError("No notes found.")
# Sort the notes
notes.sort(key=attrgetter("start", "pitch", "duration", "velocity", "instrument"))
# Collect note-related events
note_events = []
for note in notes:
if note.pitch >= min_pitch and note.pitch <= max_pitch:
start = round(note.start, 6)
end = round(note.end, 6)
ins = note.instrument.upper()
note_events.append((start, on_off_priority["ON"],
ins_priority[ins], (event_sym2idx["_".join(["ON", ins])], note.pitch)))
note_events.append((end, on_off_priority["OFF"],
ins_priority[ins], (event_sym2idx["_".join(["OFF", ins])], note.pitch)))
# Sort events by time
note_events = sorted(note_events)
note_events = [(note[0], note[-1]) for note in note_events]
return note_events
def timed_tuples_to_tuples(note_events, event_sym2idx, max_timeshift: int = 1000,
timeshift_step: int = 8):
# Create a list for all events
events = []
# Initialize the time cursor
time_cursor = int(round(note_events[0][0] * 1000))
# Iterate over note events
for time, symbol in note_events:
time = int(round(time * 1000))
if time > time_cursor:
timeshift = time - time_cursor
# First split timeshifts longer than max
n_max = timeshift // max_timeshift
for _ in range(n_max):
events.append((event_sym2idx["TIMESHIFT"], max_timeshift))
# quantize and add remaining
rem = timeshift % max_timeshift
if rem > 0:
# do not round to zero
rem = int(timeshift_step * round(float(rem) / timeshift_step))
if rem == 0:
rem = timeshift_step # do not round to zero
events.append((event_sym2idx["TIMESHIFT"], rem))
time_cursor = time
if symbol[0] != "<": # if not special symbol
events.append(symbol)
return events
def list_to_tensor(list_, sym2idx):
indices = [sym2idx[sym] for sym in list_]
indices = torch.LongTensor(indices)
return indices
def mid_to_bars(mid, event_sym2idx):
"""Takes MIDI, extracts bars
returns ndarray where each row is a token
each token has two elements,
first is an index of event, such as DRUMS_OFF, or TIMESHIFT
second is the value (pitch for note or time for timeshift)
"""
try:
bar_times = [round(bar, 6) for bar in mid.get_downbeats()]
bar_times.append(bar_times[-1] + (bar_times[-1] - bar_times[-2])) # to end
bar_times.append(bar_times[-1] + (bar_times[-1] - bar_times[-2])) # to end
note_events = mid_to_timed_tuples(mid, event_sym2idx)
i_bar = -1
i_note = 0
bars = []
cur_bar_note_events = []
cur_bar_end = -float("inf")
while i_note < len(note_events):
time, note = note_events[i_note]
if time < cur_bar_end:
cur_bar_note_events.append((time, note))
i_note += 1
else:
cur_bar_note_events.append((cur_bar_end, "<BAR_END>"))
if len(cur_bar_note_events) > 2:
events = timed_tuples_to_tuples(cur_bar_note_events, event_sym2idx)
events = tuples_to_array(events)
bars.append(events)
i_bar += 1
cur_bar_start = bar_times[i_bar]
cur_bar_end = bar_times[i_bar+1]
cur_bar_note_events = [(cur_bar_start, "<BAR_START>")]
except:
bars = None
return bars
def tuples_to_array(x):
x = [list(el) for el in x]
x = np.asarray(x, dtype=np.int16)
return x
def get_maps(min_pitch=21,max_pitch=108,max_timeshift=1000,timeshift_step=8):
# Get mapping dictionary
instruments = ["DRUMS", "GUITAR", "BASS", "PIANO", "STRINGS"]
special_symbols = ["<PAD>", "<START>"]
on_offs = ["OFF", "ON"]
token_syms = deepcopy(special_symbols)
event_syms = []
transposable_event_syms = []
for ins in instruments:
for on_off in on_offs:
event_syms.append(f"{on_off}_{ins}")
if ins != "DRUMS":
transposable_event_syms.append(f"{on_off}_{ins}")
for pitch in range(min_pitch, max_pitch + 1):
token_syms.append((f"{on_off}_{ins}", pitch))
for timeshift in range(timeshift_step, max_timeshift + timeshift_step, timeshift_step):
token_syms.append(("TIMESHIFT", timeshift))
event_syms.append("TIMESHIFT")
map = {}
map["event2idx"] = {sym: idx for idx, sym in enumerate(event_syms)}
map["idx2event"] = {idx: sym for idx, sym in enumerate(event_syms)}
map["tuple2idx"] = {}
map["idx2tuple"] = {}
for idx, sym in enumerate(token_syms):
if isinstance(sym, tuple):
indexed_tuple = (map["event2idx"][sym[0]], sym[1])
else:
indexed_tuple = sym
map["tuple2idx"][indexed_tuple] = idx
map["idx2tuple"][idx] = indexed_tuple
transposable_event_inds = [map["event2idx"][sym] for sym in transposable_event_syms]
map["transposable_event_inds"] = transposable_event_inds
return map
def transpose(x, n, transposable_event_inds, min_pitch = 21, max_pitch = 108):
# Transpose melody
for i in range(x.size(0)):
if x[i, 0].item() in transposable_event_inds and \
x[i, 1].item() + n <= max_pitch and \
x[i, 1].item() + n >= min_pitch:
x[i, 1] += n
return x
def tuples_to_ind_tensor(x, tuple2idx):
# Tuples to indices
x = [tuple2idx[el] for el in x]
x = torch.tensor(x, dtype=torch.int16)
return x
def tensor_to_tuples(x):
x = [tuple(row.tolist()) for row in x]
return x
def tensor_to_ind_tensor(x, tuple2idx):
x = tensor_to_tuples(x)
x = tuples_to_ind_tensor(x, tuple2idx)
return x |