Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,490 Bytes
69defc9 6142e6b 69defc9 6142e6b 69defc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
from argparse import ArgumentParser
from copy import deepcopy
import os
import sys
import numpy as np
import torch
import torch.nn.functional as F
import datetime
from tqdm import tqdm
from .utils import get_n_instruments
from .models.build_model import build_model
from .data.data_processing_reverse import ind_tensor_to_mid, ind_tensor_to_str
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def generate(model, maps, device, out_dir, conditioning, short_filename=False,
penalty_coeff=0.5, discrete_conditions=None, continuous_conditions=None,
max_input_len=1024, amp=True, step=None,
gen_len=2048, temperatures=[1.2,1.2], top_k=-1,
top_p=0.7, debug=False, varying_condition=None, seed=-1,
verbose=False, primers=[["<START>"]], min_n_instruments=2):
if not debug:
os.makedirs(out_dir, exist_ok=True)
model = model.to(device)
model.eval()
assert len(temperatures) in (1, 2)
if varying_condition is not None:
batch_size = varying_condition[0].size(0)
else:
try:
continuous_conditions = torch.FloatTensor(continuous_conditions).to(device)
except:
continuous_conditions = None
if conditioning == "none":
batch_size = len(primers)
elif conditioning == "discrete_token":
assert discrete_conditions is not None
discrete_conditions_tensor = [[maps["tuple2idx"][symbol] for symbol in condition_sample] \
for condition_sample in discrete_conditions]
discrete_conditions_tensor = torch.LongTensor(discrete_conditions_tensor).t().to(device)
batch_size = discrete_conditions_tensor.size(1)
elif conditioning in ("continuous_token", "continuous_concat"):
batch_size = len(continuous_conditions)
# will be used to penalize repeats
repeat_counts = [0 for _ in range(batch_size)]
exclude_symbols = [symbol for symbol in maps["tuple2idx"].keys() if symbol[0] == "<"]
# will have generated symbols and indices
gen_song_tensor = torch.LongTensor([]).to(device)
if not isinstance(primers, list):
primers = [[primers]]
primer_inds = [[maps["tuple2idx"][symbol] for symbol in primer] \
for primer in primers]
gen_inds = torch.LongTensor(primer_inds)
null_conditions_tensor = torch.FloatTensor([np.nan, np.nan]).to(device)
if len(primers) == 1:
gen_inds = gen_inds.repeat(batch_size, 1)
null_conditions_tensor = null_conditions_tensor.repeat(batch_size, 1)
if conditioning == "continuous_token":
max_input_len -= 2
conditions_tensor = continuous_conditions
elif conditioning == "continuous_concat":
conditions_tensor = continuous_conditions
elif conditioning == "discrete_token":
max_input_len -= discrete_conditions_tensor.size(0)
conditions_tensor = null_conditions_tensor
else:
conditions_tensor = null_conditions_tensor
if varying_condition is not None:
varying_condition[0] = varying_condition[0].to(device)
varying_condition[1] = varying_condition[1].to(device)
gen_inds = gen_inds.t().to(device)
print("▶ midi_emotion.generate starting")
with torch.no_grad():
pbar = tqdm(total=gen_len, desc="Generating tokens", leave=True)
i = 0
while i < gen_len:
i += 1
pbar.update(1)
gen_song_tensor = torch.cat((gen_song_tensor, gen_inds), 0)
input_ = gen_song_tensor
if len(gen_song_tensor) > max_input_len:
input_ = input_[-max_input_len:, :]
if conditioning == "discrete_token":
# concat with conditions
input_ = torch.cat((discrete_conditions_tensor, input_), 0)
# INTERPOLATED CONDITIONS
if varying_condition is not None:
valences = varying_condition[0][:, i-1]
arousals = varying_condition[1][:, i-1]
conditions_tensor = torch.cat([valences[:, None], arousals[:, None]], dim=-1)
# Run model
with torch.cuda.amp.autocast(enabled=amp):
input_ = input_.t()
output = model(input_, conditions_tensor)
output = output.permute((1, 0, 2))
# Process output, get predicted token
output = output[-1, :, :] # Select last timestep
output[output != output] = 0 # zeroing nans
if torch.all(output == 0) and verbose:
# if everything becomes zero
print("All predictions were NaN during generation")
output = torch.ones(output.shape).to(device)
# exclude certain symbols
for symbol_exclude in exclude_symbols:
try:
idx_exclude = maps["tuple2idx"][symbol_exclude]
output[:, idx_exclude] = -float("inf")
except:
pass
effective_temps = []
for j in range(batch_size):
gen_idx = gen_inds[0, j].item()
gen_tuple = maps["idx2tuple"][gen_idx]
effective_temp = temperatures[1]
if isinstance(gen_tuple, tuple):
gen_event = maps["idx2event"][gen_tuple[0]]
if "TIMESHIFT" in gen_event:
# switch from rest temperature to note temperature
effective_temp = temperatures[0]
effective_temps.append(effective_temp)
temp_tensor = torch.Tensor([effective_temps]).to(device)
output = F.log_softmax(output, dim=-1)
# Add repeat penalty to temperature
if penalty_coeff > 0:
repeat_counts_array = torch.Tensor(repeat_counts).to(device)
temp_multiplier = torch.maximum(torch.zeros_like(repeat_counts_array, device=device),
torch.log((repeat_counts_array+1)/4)*penalty_coeff)
repeat_penalties = temp_multiplier * temp_tensor
temp_tensor += repeat_penalties
# Apply temperature
output /= temp_tensor.t()
# top-k
if top_k <= 0 or top_k > output.size(-1):
top_k_eff = output.size(-1)
else:
top_k_eff = top_k
output, top_inds = torch.topk(output, top_k_eff)
# top-p
if top_p > 0 and top_p < 1:
cumulative_probs = torch.cumsum(F.softmax(output, dim=-1), dim=-1)
remove_inds = cumulative_probs > top_p
remove_inds[:, 0] = False # at least keep top value
output[remove_inds] = -float("inf")
output = F.softmax(output, dim=-1)
# Sample from probabilities
inds_sampled = torch.multinomial(output, 1, replacement=True)
gen_inds = top_inds.gather(1, inds_sampled).t()
# Update repeat counts
num_choices = torch.sum((output > 0).int(), -1)
for j in range(batch_size):
if num_choices[j] <= 2: repeat_counts[j] += 1
else: repeat_counts[j] = repeat_counts[j] // 2
pbar.close()
print("▶ token generation finished")
# Convert to midi and save
print("\nConverting to MIDI...")
# If there are less than n instruments, repeat generation for specific condition
redo_primers, redo_discrete_conditions, redo_continuous_conditions = [], [], []
for i in range(gen_song_tensor.size(-1)):
if short_filename:
out_file_path = f"{i}"
else:
if step is None:
now = datetime.datetime.now()
out_file_path = now.strftime("%Y_%m_%d_%H_%M_%S")
else:
out_file_path = step
out_file_path += f"_{i}"
if seed > 0:
out_file_path += f"_s{seed}"
if continuous_conditions is not None:
condition = continuous_conditions[i, :].tolist()
# convert to string
condition = [str(round(c, 2)).replace(".", "") for c in condition]
out_file_path += f"_V{condition[0]}_A{condition[1]}"
out_file_path += ".mid"
out_path_mid = os.path.join(out_dir, out_file_path)
symbols = ind_tensor_to_str(gen_song_tensor[:, i], maps["idx2tuple"], maps["idx2event"])
n_instruments = get_n_instruments(symbols)
if n_instruments >= min_n_instruments:
mid = ind_tensor_to_mid(gen_song_tensor[:, i], maps["idx2tuple"], maps["idx2event"], verbose=False)
out_path_txt = "txt_" + out_file_path.replace(".mid", ".txt")
out_path_txt = os.path.join(out_dir, out_path_txt)
out_path_inds = "inds_" + out_file_path.replace(".mid", ".pt")
out_path_inds = os.path.join(out_dir, out_path_inds)
if not debug:
mid.write(out_path_mid)
if verbose:
print(f"Saved to {out_path_mid}")
else:
print(f"Only has {n_instruments} instruments, not saving.")
if conditioning == "none":
redo_primers.append(primers[i])
redo_discrete_conditions = None
redo_continuous_conditions = None
elif conditioning == "discrete_token":
redo_discrete_conditions.append(discrete_conditions[i])
redo_continuous_conditions = None
redo_primers = primers
else:
redo_discrete_conditions = None
redo_continuous_conditions.append(continuous_conditions[i, :].tolist())
redo_primers = primers
return redo_primers, redo_discrete_conditions, redo_continuous_conditions
if __name__ == '__main__':
script_dir = os.path.dirname(os.path.abspath(__file__))
code_model_dir = os.path.abspath(os.path.join(script_dir, 'model'))
code_utils_dir = os.path.join(code_model_dir, 'utils')
sys.path.extend([code_model_dir, code_utils_dir])
parser = ArgumentParser()
parser.add_argument('--model_dir', type=str, help='Directory with model', required=True)
parser.add_argument('--no_cuda', action='store_true', help="Use CPU")
parser.add_argument('--num_runs', type=int, help='Number of runs', default=1)
parser.add_argument('--gen_len', type=int, help='Max generation len', default=4096)
parser.add_argument('--max_input_len', type=int, help='Max input len', default=1216)
parser.add_argument('--temp', type=float, nargs='+', help='Generation temperature', default=[1.2, 1.2])
parser.add_argument('--topk', type=int, help='Top-k sampling', default=-1)
parser.add_argument('--topp', type=float, help='Top-p sampling', default=0.7)
parser.add_argument('--debug', action='store_true', help="Do not save anything")
parser.add_argument('--seed', type=int, default=0, help="Random seed")
parser.add_argument('--no_amp', action='store_true', help="Disable automatic mixed precision")
parser.add_argument("--conditioning", type=str, required=True,
choices=["none", "discrete_token", "continuous_token",
"continuous_concat"], help='Conditioning type')
parser.add_argument('--penalty_coeff', type=float, default=0.5,
help="Coefficient for penalizing repeating notes")
parser.add_argument("--quiet", action='store_true', help="Not verbose")
parser.add_argument("--short_filename", action='store_true')
parser.add_argument('--batch_size', type=int, help='Batch size', default=4)
parser.add_argument('--min_n_instruments', type=int, help='Minimum number of instruments', default=1)
parser.add_argument('--valence', type=float, help='Conditioning valence value', default=[None], nargs='+')
parser.add_argument('--arousal', type=float, help='Conditioning arousal value', default=[None], nargs='+')
parser.add_argument("--batch_gen_dir", type=str, default="")
args = parser.parse_args()
assert len(args.valence) == len(args.arousal), "Lengths of valence and arousal must be equal"
assert (args.conditioning == "none") == (args.valence == [None] or args.arousal == [None]), \
"If conditioning is used, specify valence and arousal; if not, don't"
if args.seed > 0:
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
main_output_dir = "../output"
assert os.path.exists(os.path.join(main_output_dir, args.model_dir))
midi_output_dir = os.path.join(main_output_dir, args.model_dir, "generations", "inference")
new_dir = ""
if args.batch_gen_dir != "":
new_dir = new_dir + "_" + args.batch_gen_dir
if new_dir != "":
midi_output_dir = os.path.join(midi_output_dir, new_dir)
if not args.debug:
os.makedirs(midi_output_dir, exist_ok=True)
model_fp = os.path.join(main_output_dir, args.model_dir, 'model.pt')
mappings_fp = os.path.join(main_output_dir, args.model_dir, 'mappings.pt')
config_fp = os.path.join(main_output_dir, args.model_dir, 'model_config.pt')
if os.path.exists(mappings_fp):
maps = torch.load(mappings_fp)
else:
raise ValueError("Mapping file not found.")
start_symbol = "<START>"
n_emotion_bins = 5
valence_symbols, arousal_symbols = [], []
emotion_bins = np.linspace(-1-1e-12, 1+1e-12, num=n_emotion_bins+1)
if n_emotion_bins % 2 == 0:
bin_ids = list(range(-n_emotion_bins//2, 0)) + list(range(1, n_emotion_bins//2+1))
else:
bin_ids = list(range(-(n_emotion_bins-1)//2, (n_emotion_bins-1)//2 + 1))
for bin_id in bin_ids:
valence_symbols.append(f"<V{bin_id}>")
arousal_symbols.append(f"<A{bin_id}>")
device = torch.device('cuda' if not args.no_cuda and torch.cuda.is_available() else 'cpu')
verbose = not args.quiet
if verbose:
if device == torch.device("cuda"):
print("Using GPU")
else:
print("Using CPU")
# Load model
config = torch.load(config_fp)
model, _ = build_model(None, load_config_dict=config)
model = model.to(device)
if os.path.exists(model_fp):
model.load_state_dict(torch.load(model_fp, map_location=device))
elif os.path.exists(model_fp.replace("best_", "")):
model.load_state_dict(torch.load(model_fp.replace("best_", ""), map_location=device))
else:
raise ValueError("Model not found")
# Process conditions
null_condition = torch.FloatTensor([np.nan, np.nan]).to(device)
varying_condition = None
label_conditions = None
conditions = []
if args.valence == [None]:
conditions = None
elif len(args.valence) == 1:
for _ in range(args.batch_size):
conditions.append([args.valence[0], args.arousal[0]])
else:
for i in range(len(args.valence)):
conditions.append([args.valence[i], args.arousal[i]])
primers = [["<START>"]]
continuous_conditions = conditions
if args.conditioning == "discrete_token":
discrete_conditions = []
for condition in conditions:
valence_val, arousal_val = condition
valence_symbol = valence_symbols[np.searchsorted(
emotion_bins, valence_val, side="right") - 1]
arousal_symbol = arousal_symbols[np.searchsorted(
emotion_bins, arousal_val, side="right") - 1]
discrete_conditions.append([valence_symbol, arousal_symbol])
conditions = null_condition
elif args.conditioning == "none":
discrete_conditions = None
primers = [["<START>"] for _ in range(args.batch_size)]
elif args.conditioning in ["continuous_token", "continuous_concat"]:
primers = [["<START>"]]
discrete_conditions = None
for i in range(args.num_runs):
primers_run = deepcopy(primers)
discrete_conditions_run = deepcopy(discrete_conditions)
continuous_conditions_run = deepcopy(continuous_conditions)
while not (primers_run == [] or discrete_conditions_run == [] or continuous_conditions_run == []):
primers_run, discrete_conditions_run, continuous_conditions_run = generate(
model, maps, device,
midi_output_dir, args.conditioning, discrete_conditions=discrete_conditions_run,
min_n_instruments=args.min_n_instruments,continuous_conditions=continuous_conditions_run,
penalty_coeff=args.penalty_coeff, short_filename=args.short_filename, top_p=args.topp,
gen_len=args.gen_len, max_input_len=args.max_input_len,
amp=not args.no_amp, primers=primers_run, temperatures=args.temp, top_k=args.topk,
debug=args.debug, verbose=not args.quiet, seed=args.seed)
|