File size: 17,490 Bytes
69defc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6142e6b
 
69defc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6142e6b
 
69defc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from argparse import ArgumentParser
from copy import deepcopy
import os
import sys
import numpy as np
import torch
import torch.nn.functional as F
import datetime
from tqdm import tqdm
from .utils import get_n_instruments
from .models.build_model import build_model
from .data.data_processing_reverse import ind_tensor_to_mid, ind_tensor_to_str

# os.environ["CUDA_VISIBLE_DEVICES"] = "0"

def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in range(0, len(lst), n):
        yield lst[i:i + n]

def generate(model, maps, device, out_dir, conditioning, short_filename=False,
                penalty_coeff=0.5, discrete_conditions=None, continuous_conditions=None,
                    max_input_len=1024, amp=True, step=None, 
                    gen_len=2048, temperatures=[1.2,1.2], top_k=-1, 
                    top_p=0.7, debug=False, varying_condition=None, seed=-1,
                    verbose=False, primers=[["<START>"]], min_n_instruments=2):

    if not debug:
        os.makedirs(out_dir, exist_ok=True)
    
    model = model.to(device)
    model.eval()

    assert len(temperatures) in (1, 2)

    if varying_condition is not None:
        batch_size = varying_condition[0].size(0)
    else:
        try:
            continuous_conditions = torch.FloatTensor(continuous_conditions).to(device)
        except:
            continuous_conditions = None
        if conditioning == "none":
            batch_size = len(primers)
        elif conditioning == "discrete_token":
            assert discrete_conditions is not None
            discrete_conditions_tensor = [[maps["tuple2idx"][symbol] for symbol in condition_sample] \
                for condition_sample in discrete_conditions]
            discrete_conditions_tensor = torch.LongTensor(discrete_conditions_tensor).t().to(device)
            batch_size = discrete_conditions_tensor.size(1)
            
        elif conditioning in ("continuous_token", "continuous_concat"):
            batch_size = len(continuous_conditions)
            
    # will be used to penalize repeats
    repeat_counts = [0 for _ in range(batch_size)]

    exclude_symbols = [symbol for symbol in maps["tuple2idx"].keys() if symbol[0] == "<"]

    # will have generated symbols and indices
    gen_song_tensor = torch.LongTensor([]).to(device)

    if not isinstance(primers, list):
        primers = [[primers]]
    primer_inds = [[maps["tuple2idx"][symbol] for symbol in primer] \
        for primer in primers]

    gen_inds = torch.LongTensor(primer_inds)

    null_conditions_tensor = torch.FloatTensor([np.nan, np.nan]).to(device)

    if len(primers) == 1:
        gen_inds = gen_inds.repeat(batch_size, 1)
        null_conditions_tensor = null_conditions_tensor.repeat(batch_size, 1)

    if conditioning == "continuous_token":
        max_input_len -= 2
        conditions_tensor = continuous_conditions
    elif conditioning == "continuous_concat":
        conditions_tensor = continuous_conditions
    elif conditioning == "discrete_token":
        max_input_len -= discrete_conditions_tensor.size(0)
        conditions_tensor = null_conditions_tensor
    else:
        conditions_tensor = null_conditions_tensor

    if varying_condition is not None:
        varying_condition[0] = varying_condition[0].to(device)
        varying_condition[1] = varying_condition[1].to(device)

    gen_inds = gen_inds.t().to(device)

    print("▶ midi_emotion.generate starting")

    with torch.no_grad():
        pbar = tqdm(total=gen_len, desc="Generating tokens", leave=True)
        i = 0
        while i < gen_len:
            i += 1
            pbar.update(1)

            gen_song_tensor = torch.cat((gen_song_tensor, gen_inds), 0)

            input_ = gen_song_tensor
            if len(gen_song_tensor) > max_input_len:
                input_ = input_[-max_input_len:, :]

            if conditioning == "discrete_token":
                # concat with conditions
                input_ = torch.cat((discrete_conditions_tensor, input_), 0)

            # INTERPOLATED CONDITIONS
            if varying_condition is not None:
                valences = varying_condition[0][:, i-1]
                arousals = varying_condition[1][:, i-1]
                conditions_tensor = torch.cat([valences[:, None], arousals[:, None]], dim=-1)

            # Run model
            with torch.cuda.amp.autocast(enabled=amp):
                input_ = input_.t()
                output = model(input_, conditions_tensor)
                output = output.permute((1, 0, 2))

            # Process output, get predicted token
            output = output[-1, :, :]     # Select last timestep
            output[output != output] = 0    # zeroing nans
            
            if torch.all(output == 0) and verbose:
                # if everything becomes zero
                print("All predictions were NaN during generation")
                output = torch.ones(output.shape).to(device)

            # exclude certain symbols
            for symbol_exclude in exclude_symbols:
                try:
                    idx_exclude = maps["tuple2idx"][symbol_exclude]
                    output[:, idx_exclude] = -float("inf")
                except:
                    pass
            
            effective_temps = []
            for j in range(batch_size):
                gen_idx = gen_inds[0, j].item()
                gen_tuple = maps["idx2tuple"][gen_idx]
                effective_temp = temperatures[1]
                if isinstance(gen_tuple, tuple):
                    gen_event = maps["idx2event"][gen_tuple[0]]
                    if "TIMESHIFT" in gen_event:
                        # switch from rest temperature to note temperature
                        effective_temp = temperatures[0]
                effective_temps.append(effective_temp)

            temp_tensor = torch.Tensor([effective_temps]).to(device)

            output = F.log_softmax(output, dim=-1)

            # Add repeat penalty to temperature
            if penalty_coeff > 0:
                repeat_counts_array = torch.Tensor(repeat_counts).to(device)
                temp_multiplier = torch.maximum(torch.zeros_like(repeat_counts_array, device=device), 
                    torch.log((repeat_counts_array+1)/4)*penalty_coeff)
                repeat_penalties = temp_multiplier * temp_tensor
                temp_tensor += repeat_penalties

            # Apply temperature
            output /= temp_tensor.t()
            
            # top-k
            if top_k <= 0 or top_k > output.size(-1): 
                top_k_eff = output.size(-1)
            else:
                top_k_eff = top_k
            output, top_inds = torch.topk(output, top_k_eff)

            # top-p
            if top_p > 0 and top_p < 1:
                cumulative_probs = torch.cumsum(F.softmax(output, dim=-1), dim=-1)
                remove_inds = cumulative_probs > top_p
                remove_inds[:, 0] = False   # at least keep top value
                output[remove_inds] = -float("inf")

            output = F.softmax(output, dim=-1)
        
            # Sample from probabilities
            inds_sampled = torch.multinomial(output, 1, replacement=True)
            gen_inds = top_inds.gather(1, inds_sampled).t()

            # Update repeat counts
            num_choices = torch.sum((output > 0).int(), -1)
            for j in range(batch_size):
                if num_choices[j] <= 2: repeat_counts[j] += 1
                else: repeat_counts[j] = repeat_counts[j] // 2

        pbar.close()

        print("▶ token generation finished")

        # Convert to midi and save
        print("\nConverting to MIDI...")

        # If there are less than n instruments, repeat generation for specific condition
        redo_primers, redo_discrete_conditions, redo_continuous_conditions = [], [], []
        for i in range(gen_song_tensor.size(-1)):
            if short_filename:
                out_file_path = f"{i}"
            else:
                if step is None:
                    now = datetime.datetime.now()
                    out_file_path = now.strftime("%Y_%m_%d_%H_%M_%S")
                else:
                    out_file_path = step

                out_file_path += f"_{i}"

            if seed > 0:
                out_file_path += f"_s{seed}"

            if continuous_conditions is not None:
                condition = continuous_conditions[i, :].tolist()
                # convert to string
                condition = [str(round(c, 2)).replace(".", "") for c in condition]
                out_file_path += f"_V{condition[0]}_A{condition[1]}"

            out_file_path += ".mid"
            out_path_mid = os.path.join(out_dir, out_file_path)

            symbols = ind_tensor_to_str(gen_song_tensor[:, i], maps["idx2tuple"], maps["idx2event"])
            n_instruments = get_n_instruments(symbols)

            if n_instruments >= min_n_instruments:
                mid = ind_tensor_to_mid(gen_song_tensor[:, i], maps["idx2tuple"], maps["idx2event"], verbose=False)
                out_path_txt = "txt_" + out_file_path.replace(".mid", ".txt")
                out_path_txt = os.path.join(out_dir, out_path_txt)
                out_path_inds = "inds_" + out_file_path.replace(".mid", ".pt")
                out_path_inds = os.path.join(out_dir, out_path_inds)

                if not debug:
                    mid.write(out_path_mid)
                    if verbose:
                        print(f"Saved to {out_path_mid}")
            else:
                print(f"Only has {n_instruments} instruments, not saving.")
                if conditioning == "none":
                    redo_primers.append(primers[i])
                    redo_discrete_conditions = None
                    redo_continuous_conditions = None
                elif conditioning == "discrete_token":
                    redo_discrete_conditions.append(discrete_conditions[i])
                    redo_continuous_conditions = None
                    redo_primers = primers
                else:
                    redo_discrete_conditions = None
                    redo_continuous_conditions.append(continuous_conditions[i, :].tolist())
                    redo_primers = primers

    return redo_primers, redo_discrete_conditions, redo_continuous_conditions


if __name__ == '__main__':
    script_dir = os.path.dirname(os.path.abspath(__file__))
    code_model_dir = os.path.abspath(os.path.join(script_dir, 'model'))
    code_utils_dir = os.path.join(code_model_dir, 'utils')
    sys.path.extend([code_model_dir, code_utils_dir])

    parser = ArgumentParser()

    parser.add_argument('--model_dir', type=str, help='Directory with model', required=True)
    parser.add_argument('--no_cuda', action='store_true', help="Use CPU")
    parser.add_argument('--num_runs', type=int, help='Number of runs', default=1)
    parser.add_argument('--gen_len', type=int, help='Max generation len', default=4096)
    parser.add_argument('--max_input_len', type=int, help='Max input len', default=1216)
    parser.add_argument('--temp', type=float, nargs='+', help='Generation temperature', default=[1.2, 1.2])
    parser.add_argument('--topk', type=int, help='Top-k sampling', default=-1)
    parser.add_argument('--topp', type=float, help='Top-p sampling', default=0.7)
    parser.add_argument('--debug', action='store_true', help="Do not save anything")
    parser.add_argument('--seed', type=int, default=0, help="Random seed")
    parser.add_argument('--no_amp', action='store_true', help="Disable automatic mixed precision")
    parser.add_argument("--conditioning", type=str, required=True,
                    choices=["none", "discrete_token", "continuous_token",
                             "continuous_concat"], help='Conditioning type')
    parser.add_argument('--penalty_coeff', type=float, default=0.5,
                        help="Coefficient for penalizing repeating notes")
    parser.add_argument("--quiet", action='store_true', help="Not verbose")
    parser.add_argument("--short_filename", action='store_true')
    parser.add_argument('--batch_size', type=int, help='Batch size', default=4)
    parser.add_argument('--min_n_instruments', type=int, help='Minimum number of instruments', default=1)
    parser.add_argument('--valence', type=float, help='Conditioning valence value', default=[None], nargs='+')
    parser.add_argument('--arousal', type=float, help='Conditioning arousal value', default=[None], nargs='+')
    parser.add_argument("--batch_gen_dir", type=str, default="")

    args = parser.parse_args()

    assert len(args.valence) == len(args.arousal), "Lengths of valence and arousal must be equal"
    assert (args.conditioning == "none") == (args.valence == [None] or args.arousal == [None]), \
        "If conditioning is used, specify valence and arousal; if not, don't"

    if args.seed > 0:
        torch.manual_seed(args.seed)
        torch.cuda.manual_seed(args.seed)

    main_output_dir = "../output"
    assert os.path.exists(os.path.join(main_output_dir, args.model_dir))
    midi_output_dir = os.path.join(main_output_dir, args.model_dir, "generations", "inference")

    new_dir = ""
    if args.batch_gen_dir != "":
        new_dir = new_dir + "_" + args.batch_gen_dir
    if new_dir != "":
        midi_output_dir = os.path.join(midi_output_dir, new_dir)
    if not args.debug:
        os.makedirs(midi_output_dir, exist_ok=True)

    model_fp = os.path.join(main_output_dir, args.model_dir, 'model.pt')
    mappings_fp = os.path.join(main_output_dir, args.model_dir, 'mappings.pt')
    config_fp = os.path.join(main_output_dir, args.model_dir, 'model_config.pt')

    if os.path.exists(mappings_fp):
        maps = torch.load(mappings_fp)
    else:
        raise ValueError("Mapping file not found.")

    start_symbol = "<START>"
    n_emotion_bins = 5
    valence_symbols, arousal_symbols = [], []

    emotion_bins = np.linspace(-1-1e-12, 1+1e-12, num=n_emotion_bins+1)
    if n_emotion_bins % 2 == 0:
        bin_ids = list(range(-n_emotion_bins//2, 0)) + list(range(1, n_emotion_bins//2+1))
    else:
        bin_ids = list(range(-(n_emotion_bins-1)//2, (n_emotion_bins-1)//2 + 1))
        
    for bin_id in bin_ids:
        valence_symbols.append(f"<V{bin_id}>")
        arousal_symbols.append(f"<A{bin_id}>")

    device = torch.device('cuda' if not args.no_cuda and torch.cuda.is_available() else 'cpu')
    
    verbose = not args.quiet
    if verbose:
        if device == torch.device("cuda"):
            print("Using GPU")
        else:
            print("Using CPU")

    # Load model
    config = torch.load(config_fp)
    model, _ = build_model(None, load_config_dict=config)
    model = model.to(device)
    if os.path.exists(model_fp):
        model.load_state_dict(torch.load(model_fp, map_location=device))
    elif os.path.exists(model_fp.replace("best_", "")):
        model.load_state_dict(torch.load(model_fp.replace("best_", ""), map_location=device))
    else:
        raise ValueError("Model not found")

    # Process conditions
    null_condition = torch.FloatTensor([np.nan, np.nan]).to(device)
    
    varying_condition = None
    label_conditions = None

    conditions = []
    if args.valence == [None]:
        conditions = None
    elif len(args.valence) == 1:
        for _ in range(args.batch_size):
            conditions.append([args.valence[0], args.arousal[0]])
    else:
        for i in range(len(args.valence)):
            conditions.append([args.valence[i], args.arousal[i]])

    primers = [["<START>"]]
    continuous_conditions = conditions
    if args.conditioning == "discrete_token":
       
        discrete_conditions = []
        for condition in conditions:
            valence_val, arousal_val = condition
            valence_symbol = valence_symbols[np.searchsorted(
                emotion_bins, valence_val, side="right") - 1]
            arousal_symbol = arousal_symbols[np.searchsorted(
                emotion_bins, arousal_val, side="right") - 1]
            discrete_conditions.append([valence_symbol, arousal_symbol])
        
        conditions = null_condition
    
    elif args.conditioning == "none":
        discrete_conditions = None
        primers = [["<START>"] for _ in range(args.batch_size)]

    elif args.conditioning in ["continuous_token", "continuous_concat"]:
        primers = [["<START>"]]
        discrete_conditions = None
                    
    for i in range(args.num_runs):
        primers_run = deepcopy(primers)
        discrete_conditions_run = deepcopy(discrete_conditions)
        continuous_conditions_run = deepcopy(continuous_conditions)
        while not (primers_run == [] or discrete_conditions_run == [] or continuous_conditions_run == []):
            primers_run, discrete_conditions_run, continuous_conditions_run = generate(
                        model, maps, device, 
                        midi_output_dir, args.conditioning, discrete_conditions=discrete_conditions_run, 
                        min_n_instruments=args.min_n_instruments,continuous_conditions=continuous_conditions_run,
                        penalty_coeff=args.penalty_coeff, short_filename=args.short_filename, top_p=args.topp, 
                        gen_len=args.gen_len, max_input_len=args.max_input_len,
                        amp=not args.no_amp, primers=primers_run, temperatures=args.temp, top_k=args.topk, 
                        debug=args.debug, verbose=not args.quiet, seed=args.seed)