Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,816 Bytes
69defc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import time
import math
import datetime
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from models.build_model import build_model
from generate import generate
from data.preprocess_features import preprocess_features
from data.loader import Loader
from data.loader_exhaustive import LoaderExhaustive
from data.loader_generations import LoaderGenerations
from data.collate import filter_collate
from utils import CsvWriter, create_exp_dir, accuracy
from config import args
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Set the random seed manually for reproducibility.
if args.seed > 0:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
class Runner:
def __init__(self):
self.logging = create_exp_dir(args.work_dir, debug=args.debug)
use_cuda = torch.cuda.is_available() and not args.no_cuda
self.device = torch.device('cuda' if use_cuda else 'cpu')
if self.device == torch.device("cuda"):
self.logging("Using GPU")
else:
self.logging("Using CPU")
self.train_step = 0
self.n_sequences_total = 0
self.init_hours = 0
self.epoch = 0
self.init_time = time.time()
# Load data
n_bins = args.n_emotion_bins if args.conditioning == "discrete_token" and \
not args.regression else None
conditional = args.conditioning != "none" or args.regression
# Preprocessing
train_feats, test_feats = preprocess_features(
"../data_files/features/pianoroll/full_dataset_features_summarized.csv",
n_bins=n_bins, conditional=conditional,
use_labeled_only=not args.full_dataset)
if args.exhaustive_eval:
# Evaluate using ENTIRE test set
train_dataset = []
test_dataset = LoaderExhaustive(args.data_folder, test_feats, args.tgt_len, args.conditioning,
max_samples=args.n_samples, regression=args.regression,
always_use_discrete_condition=args.always_use_discrete_condition)
else:
train_dataset = Loader(args.data_folder, train_feats, args.tgt_len, args.conditioning,
regression=args.regression, always_use_discrete_condition=args.always_use_discrete_condition)
test_dataset = Loader(args.data_folder, test_feats, args.tgt_len, args.conditioning,
regression=args.regression, always_use_discrete_condition=args.always_use_discrete_condition)
if args.regression_dir is not None:
# Perform emotion regression on generated samples
train_dataset = []
test_dataset = LoaderGenerations(args.regression_dir, args.tgt_len)
self.null_condition = torch.FloatTensor([np.nan, np.nan]).to(self.device)
self.maps = test_dataset.get_maps()
self.pad_idx = test_dataset.get_pad_idx()
self.vocab_size = test_dataset.get_vocab_len()
args.vocab_size = self.vocab_size
self.logging(f"Number of tokens: {self.vocab_size}")
if args.exhaustive_eval or args.regression_dir is not None:
self.train_loader = []
else:
self.train_loader = torch.utils.data.DataLoader(train_dataset, args.batch_size, shuffle=not args.debug,
num_workers=args.num_workers, collate_fn=filter_collate,
pin_memory=not args.no_cuda, drop_last=True)
self.test_loader = torch.utils.data.DataLoader(test_dataset, args.batch_size, shuffle=False,
num_workers=args.num_workers, collate_fn=filter_collate,
pin_memory=not args.no_cuda and args.regression_dir is None,
drop_last=True)
print(f"Data loader lengths\nTrain: {len(train_dataset)}")
if not args.overfit:
print(f"Test:{len(test_dataset)}")
self.gen_dir = os.path.join(args.work_dir, "generations", "training")
# Automatic mixed precision
self.amp = not args.no_amp and self.device == torch.device('cuda')
if self.amp:
self.logging("Using automatic mixed precision")
else:
self.logging("Using float32")
self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp)
self.init_model() # Build the model
if not args.debug:
# Save mappings
os.makedirs(self.gen_dir, exist_ok=True)
torch.save(self.maps, os.path.join(args.work_dir, "mappings.pt"))
self.csv_writer = CsvWriter(os.path.join(args.work_dir, "performance.csv"),
["epoch", "step", "hour", "lr", "trn_loss", "val_loss", "val_l1_v", "val_l1_a"],
in_path=self.csv_in, debug=args.debug)
args.n_all_param = sum([p.nelement() for p in self.model.parameters()])
self.model = self.model.to(self.device)
self.ce_loss = nn.CrossEntropyLoss(ignore_index=self.pad_idx).to(self.device)
self.mse_loss = nn.MSELoss()
self.l1_loss = nn.L1Loss()
#### scheduler
if args.scheduler == '--':
self.scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer,
args.max_step, eta_min=args.eta_min)
elif args.scheduler == 'dev_perf':
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer,
factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min)
elif args.scheduler == 'constant':
pass
elif args.scheduler == 'cyclic':
self.scheduler = optim.lr_scheduler.CyclicLR(self.optimizer,
args.lr_min, args.lr_max, verbose=False, cycle_momentum=False)
# Print log
if not args.debug:
self.logging('=' * 120)
for k, v in args.__dict__.items():
self.logging(' - {} : {}'.format(k, v))
self.logging('=' * 120)
self.logging('#params = {}'.format(args.n_all_param))
now = datetime.datetime.now()
now = now.strftime("%d-%m-%Y %H:%M")
self.logging(f"Run started at {now}")
self.once = True
def init_model(self):
# Initialize model
if args.restart_dir:
# Load existing model
config = torch.load(os.path.join(args.restart_dir, "model_config.pt"))
self.model, config = build_model(None, load_config_dict=config)
self.model = self.model.to(self.device)
model_fp = os.path.join(args.restart_dir, 'model.pt')
optimizer_fp = os.path.join(args.restart_dir, 'optimizer.pt')
stats_fp = os.path.join(args.restart_dir, 'stats.pt')
scaler_fp = os.path.join(args.restart_dir, 'scaler.pt')
self.model.load_state_dict(
torch.load(model_fp, map_location=lambda storage, loc: storage))
self.logging(f"Model loaded from {model_fp}")
self.csv_in = os.path.join(args.restart_dir, 'performance.csv')
else:
# Build model from scratch
self.csv_in = None
self.model, config = build_model(vars(args))
self.model = self.model.to(self.device)
# save model configuration for later load
if not args.debug:
torch.save(config, os.path.join(args.work_dir, "model_config.pt"))
self.optimizer = optim.Adam(self.model.parameters(), lr=args.lr)
# Load self.optimizer if necessary
if args.restart_dir:
if os.path.exists(optimizer_fp):
try:
self.optimizer.load_state_dict(
torch.load(optimizer_fp, map_location=lambda storage, loc: storage))
except:
pass
else:
print('Optimizer was not saved. Start from scratch.')
try:
stats = torch.load(stats_fp)
self.train_step = stats["step"]
self.init_hours = stats["hour"]
self.epoch = stats["epoch"]
self.n_sequences_total = stats["sample"]
except:
self.train_step = 0
self.init_hours = 0
self.epoch = 0
self.n_sequences_total = 0
if os.path.exists(scaler_fp) and not args.reset_scaler:
try:
self.scaler.load_state_dict(torch.load(scaler_fp))
except:
pass
if args.overwrite_lr:
# New learning rate
for p in self.optimizer.param_groups:
p['lr'] = args.lr
###############################################################################
# EVALUATION
###############################################################################
def evaluate(self):
# Turn on evaluation mode which disables dropout.
self.model.eval()
# Evaluation
topk = (1, 5) # find accuracy for top-1 and top-5
n_elements_total, n_sequences_total, total_loss = 0, 0, 0.
total_accs = {"l1_v": 0., "l1_a": 0., "l1_mean": 0., "l1_mean_normal":0
} if args.regression else {k: 0. for k in topk}
with torch.no_grad():
n_batches = len(self.test_loader)
loader = enumerate(self.test_loader)
if args.exhaustive_eval or args.regression:
loader = tqdm(loader, total=n_batches)
for i, (input_, condition, target) in loader:
if args.max_eval_step > 0 and i >= args.max_eval_step:
break
if input_ != []:
input_ = input_.to(self.device)
condition = condition.to(self.device)
if not args.regression:
target = target.to(self.device)
loss, pred = self.forward_pass(input_, condition, target)
if args.regression:
pred = torch.clamp(pred, min=-1.0, max=1.0)
loss = self.l1_loss(pred, condition)
l1_v = self.l1_loss(pred[:, 0], condition[:, 0]).item()
l1_a = self.l1_loss(pred[:, 1], condition[:, 1]).item()
accuracies = {"l1_v": l1_v, "l1_a": l1_a,
"l1_mean": (l1_v + l1_a) / 2,
"l1_mean_normal": (l1_v + l1_a) / 2 / 2}
n_elements = pred[:, 0].numel()
else:
accuracies = accuracy(pred, target, topk=topk, ignore_index=self.pad_idx)
n_elements = input_.numel()
n_sequences = input_.size(0)
total_loss += n_elements * loss.item()
for key, value in accuracies.items():
total_accs[key] += n_elements * value
n_elements_total += n_elements
n_sequences_total += n_sequences
if n_elements_total == 0:
avg_loss = float('nan')
avg_accs = float('nan')
else:
avg_loss = total_loss / n_elements_total
avg_accs = {k: v/n_elements_total for k, v in total_accs.items()}
if args.exhaustive_eval:
print(f"Total number of sequences: {n_sequences_total}")
return avg_loss, avg_accs
def forward_pass(self, input_, condition, target):
input_ = input_.to(self.device)
condition = condition.to(self.device)
with torch.cuda.amp.autocast(enabled=self.amp):
if args.regression:
output = self.model(input_)
loss = self.l1_loss(output, condition)
else:
target = target.to(self.device)
output = self.model(input_, condition)
output_flat = output.reshape(-1, output.size(-1))
target = target.reshape(-1)
loss = self.ce_loss(output_flat, target)
return loss, output
def train(self):
# Turn on training mode which enables dropout.
self.model.train()
train_loss = 0
n_elements_total = 0
train_interval_start = time.time()
while True:
for input_, condition, target in self.train_loader:
self.model.train()
if input_ != []:
loss, _ = self.forward_pass(input_, condition, target)
loss_val = loss.item()
loss /= args.accumulate_step
n_elements = input_.numel()
if not math.isnan(loss_val):
train_loss += n_elements * loss_val
n_elements_total += n_elements
self.n_sequences_total += input_.size(0)
self.scaler.scale(loss).backward()
if self.train_step % args.accumulate_step == 0:
self.scaler.unscale_(self.optimizer)
if args.clip > 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), args.clip)
self.scaler.step(self.optimizer)
self.scaler.update()
self.model.zero_grad()
if args.scheduler != "constant":
# linear warmup stage
if self.train_step <= args.warmup_step:
curr_lr = args.lr * self.train_step / args.warmup_step
self.optimizer.param_groups[0]['lr'] = curr_lr
else:
self.scheduler.step()
if (self.train_step % args.gen_step == 0) and self.train_step > 0 and not args.regression:
# Generate and save samples
with torch.no_grad():
self.model.eval()
if args.max_gen_input_len > 0:
max_input_len = args.max_gen_input_len
else:
max_input_len = args.tgt_len
primers = [["<START>"]]
# Use fixed set of conditions
if args.conditioning == "none":
discrete_conditions = None
continuous_conditions = None
primers = [["<START>"] for _ in range(4)]
elif args.conditioning == "discrete_token":
discrete_conditions = [
["<V-2>", "<A-2>"],
["<V-2>", "<A2>"],
["<V2>", "<A-2>"],
["<V2>", "<A2>"],
]
continuous_conditions = None
elif args.conditioning in ["continuous_token", "continuous_concat"]:
discrete_conditions = None
continuous_conditions = [
[-0.8, -0.8],
[-0.8, 0.8],
[0.8, -0.8],
[0.8, 0.8]
]
generate(self.model, self.maps, self.device, self.gen_dir, args.conditioning,
debug=args.debug, verbose=False, amp=self.amp, discrete_conditions=discrete_conditions,
continuous_conditions=continuous_conditions, min_n_instruments=1,
gen_len=args.gen_len, max_input_len=max_input_len,
step=str(self.train_step), primers=primers,
temperatures=[args.temp_note, args.temp_rest])
if (self.train_step % args.log_step == 0):
# Print log
if n_elements_total > 0:
cur_loss = train_loss / n_elements_total
elapsed_total = time.time() - self.init_time
elapsed_interval = time.time() - train_interval_start
hours_elapsed = elapsed_total / 3600.0
hours_total = self.init_hours + hours_elapsed
lr = self.optimizer.param_groups[0]['lr']
log_str = '| Epoch {:3d} step {:>8d} | {:>6d} sequences | {:>3.1f} h | lr {:.2e} ' \
'| ms/batch {:4.0f} | loss {:7.4f}'.format(
self.epoch, self.train_step, self.n_sequences_total, hours_total, lr,
elapsed_interval * 1000 / args.log_step, cur_loss)
self.logging(log_str)
self.csv_writer.update({"epoch": self.epoch, "step": self.train_step, "hour": hours_total,
"lr": lr, "trn_loss": cur_loss, "val_loss": np.nan,
"val_l1_v": np.nan, "val_l1_a": np.nan})
train_loss = 0
n_elements_total = 0
self.n_good_output, self.n_nan_output = 0, 0
train_interval_start = time.time()
if not args.debug:
# Save model
model_fp = os.path.join(args.work_dir, 'model.pt')
torch.save(self.model.state_dict(), model_fp)
optimizer_fp = os.path.join(args.work_dir, 'optimizer.pt')
torch.save(self.optimizer.state_dict(), optimizer_fp)
scaler_fp = os.path.join(args.work_dir, 'scaler.pt')
torch.save(self.scaler.state_dict(), scaler_fp)
torch.save({"step": self.train_step, "hour": hours_total, "epoch": self.epoch,
"sample": self.n_sequences_total},
os.path.join(args.work_dir, 'stats.pt'))
if (self.train_step % args.eval_step == 0):
# Evaluate model
val_loss, val_acc = self.evaluate()
elapsed_total = time.time() - self.init_time
hours_elapsed = elapsed_total / 3600.0
hours_total = self.init_hours + hours_elapsed
lr = self.optimizer.param_groups[0]['lr']
self.logging('-' * 120)
log_str = '| Eval {:3d} step {:>8d} | now: {} | {:>3.1f} h' \
'| valid loss {:7.4f} | ppl {:5.3f}'.format(
self.train_step // args.eval_step, self.train_step,
time.strftime("%d-%m - %H:%M"), hours_total,
val_loss, math.exp(val_loss))
if args.regression:
log_str += " | l1_v: {:5.3f} | l1_a: {:5.3f}".format(
val_acc["l1_v"], val_acc["l1_a"])
self.csv_writer.update({"epoch": self.epoch, "step": self.train_step, "hour": hours_total,
"lr": lr, "trn_loss": np.nan, "val_loss": val_loss})
self.logging(log_str)
self.logging('-' * 120)
# dev-performance based learning rate annealing
if args.scheduler == 'dev_perf':
self.scheduler.step(val_loss)
if self.train_step >= args.max_step:
break
self.train_step += 1
self.epoch += 1
if self.train_step >= args.max_step:
break
def run(self):
# Loop over epochs.
# At any point you can hit Ctrl + C to break out of training early.
try:
if args.exhaustive_eval or args.regression_dir is not None:
self.logging("Exhaustive evaluation")
if args.regression_dir is not None:
self.logging(f"For regression on folder {args.regression_dir}")
loss, accuracies = self.evaluate()
perplexity = math.exp(loss)
elapsed_total = time.time() - self.init_time
hours_elapsed = elapsed_total / 3600.0
msg = f"Loss: {loss:7.4f}, ppl: {perplexity:5.2f}"
for k, v in accuracies.items():
if args.regression:
msg += f", {k}: {v:7.4f}"
else:
msg += f", top{k:1.0f}: {v:7.4f}"
msg += f", hours: {hours_elapsed:3.1f}"
self.logging(msg)
else:
while True:
self.train()
if self.train_step >= args.max_step:
self.logging('-' * 120)
self.logging('End of training')
break
except KeyboardInterrupt:
self.logging('-' * 120)
self.logging('Exiting from training early')
if __name__ == "__main__":
runner = Runner()
runner.run() |