Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
class Transformer(nn.Module): | |
def __init__(self, n_tokens=None, n_layer=None, n_head=None, d_model=None, d_ff=None, | |
dropout=0.0, pad_idx=0): | |
super(Transformer, self).__init__() | |
from torch.nn import TransformerEncoder, TransformerEncoderLayer | |
# self.name = 'Transformer' | |
self.pos_encoder = PositionalEncoding(d_model, dropout) | |
encoder_layers = TransformerEncoderLayer(d_model, n_head, dim_feedforward=d_ff, dropout=dropout) | |
norm = nn.LayerNorm(d_model) | |
self.transformer_encoder = TransformerEncoder(encoder_layers, n_layer, norm=norm) | |
self.encoder = nn.Embedding(n_tokens, d_model, padding_idx=pad_idx) | |
self.d_model = d_model | |
self.decoder = nn.Linear(d_model, n_tokens) | |
self.init_weights() | |
def init_weights(self): | |
initrange = 0.1 | |
self.encoder.weight.data.uniform_(-initrange, initrange) | |
self.decoder.bias.data.zero_() | |
self.decoder.weight.data.uniform_(-initrange, initrange) | |
def forward(self, src, src_mask, src_key_padding_mask=None): | |
src = self.encoder(src) * math.sqrt(self.d_model) | |
src = self.pos_encoder(src) | |
output = self.transformer_encoder(src, src_mask, | |
src_key_padding_mask=src_key_padding_mask) | |
output = self.decoder(output) | |
return output | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model, dropout=0.1, max_len=5000): | |
super(PositionalEncoding, self).__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
pe = torch.zeros(max_len, d_model) | |
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0).transpose(0, 1) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
x = x + self.pe[:x.size(0), :] | |
return self.dropout(x) |