Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
25f023e
1
Parent(s):
015fa2c
Clean up
Browse files- app.py +176 -45
- aria/aria.py +30 -6
- aria/image_encoder.py +30 -2
- requirements.txt +4 -2
app.py
CHANGED
@@ -13,6 +13,7 @@ import librosa
|
|
13 |
import soundfile as sf
|
14 |
from midi2audio import FluidSynth
|
15 |
import spaces
|
|
|
16 |
|
17 |
# Remove CPU forcing since we'll use ZeroGPU
|
18 |
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
@@ -21,7 +22,12 @@ import spaces
|
|
21 |
from aria.image_encoder import ImageEncoder
|
22 |
from aria.aria import ARIA
|
23 |
|
24 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
25 |
# Pre-download all model files at startup
|
26 |
MODEL_FILES = {
|
27 |
"image_encoder": "image_encoder.pt",
|
@@ -33,34 +39,71 @@ MODEL_FILES = {
|
|
33 |
# Create cache directory
|
34 |
CACHE_DIR = os.path.join(os.path.dirname(__file__), "model_cache")
|
35 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
|
|
|
|
36 |
|
37 |
# Download and cache all files
|
38 |
cached_files = {}
|
|
|
|
|
|
|
39 |
for model_type, files in MODEL_FILES.items():
|
|
|
|
|
|
|
40 |
if isinstance(files, str):
|
41 |
files = [files]
|
42 |
|
43 |
cached_files[model_type] = []
|
44 |
for file in files:
|
|
|
|
|
|
|
|
|
45 |
try:
|
46 |
# Check if file already exists in cache
|
47 |
repo_id = "vincentamato/aria"
|
48 |
cached_path = os.path.join(CACHE_DIR, repo_id, file)
|
|
|
49 |
if os.path.exists(cached_path):
|
50 |
-
|
|
|
51 |
cached_files[model_type].append(cached_path)
|
52 |
else:
|
53 |
-
print(f"Downloading
|
|
|
|
|
|
|
|
|
54 |
cached_path = hf_hub_download(
|
55 |
repo_id=repo_id,
|
56 |
filename=file,
|
57 |
-
cache_dir=CACHE_DIR
|
|
|
58 |
)
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
except Exception as e:
|
61 |
-
print(f"Error with file {file}: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# Global model cache
|
66 |
models = {}
|
@@ -151,30 +194,64 @@ def convert_midi_to_wav(midi_path):
|
|
151 |
return wav_path
|
152 |
|
153 |
try:
|
154 |
-
#
|
155 |
-
|
156 |
-
|
157 |
-
'
|
158 |
-
'
|
159 |
-
'
|
|
|
|
|
|
|
160 |
]
|
161 |
|
162 |
soundfont = None
|
163 |
-
for
|
164 |
-
if os.path.exists(
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
if soundfont is None:
|
169 |
-
|
|
|
|
|
|
|
170 |
|
171 |
-
# Convert MIDI to WAV using FluidSynth
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
return wav_path
|
176 |
except Exception as e:
|
177 |
print(f"Error converting MIDI to WAV: {str(e)}")
|
|
|
178 |
return None
|
179 |
|
180 |
@spaces.GPU(duration=120)
|
@@ -186,7 +263,7 @@ def generate_music(image, conditioning_type, gen_len, temperature, top_p, min_in
|
|
186 |
return (
|
187 |
None, # For emotion_chart
|
188 |
None, # For midi_output
|
189 |
-
f"
|
190 |
)
|
191 |
|
192 |
try:
|
@@ -205,19 +282,41 @@ def generate_music(image, conditioning_type, gen_len, temperature, top_p, min_in
|
|
205 |
min_instruments=int(min_instruments)
|
206 |
)
|
207 |
|
|
|
|
|
|
|
208 |
# Convert MIDI to WAV
|
209 |
wav_path = convert_midi_to_wav(midi_path)
|
210 |
if wav_path is None:
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
# Build a nice Markdown result string
|
221 |
result_text = f"""
|
222 |
**Model Type:** {conditioning_type}
|
223 |
|
@@ -240,7 +339,7 @@ Your music has been generated! Click the play button above to listen.
|
|
240 |
return (
|
241 |
None,
|
242 |
None,
|
243 |
-
f"
|
244 |
)
|
245 |
|
246 |
def generate_music_wrapper(image, conditioning_type, gen_len, note_temp, rest_temp, top_p, min_instruments):
|
@@ -261,16 +360,31 @@ with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
|
|
261 |
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"]
|
262 |
)) as demo:
|
263 |
gr.Markdown("""
|
264 |
-
#
|
265 |
|
266 |
Upload an image and ARIA will analyze its emotional content to generate matching music!
|
267 |
|
268 |
-
|
269 |
1. ARIA first analyzes the emotional content of your image along two dimensions:
|
270 |
- **Valence**: How positive or negative the emotion is (-1 to 1)
|
271 |
- **Arousal**: How calm or excited the emotion is (-1 to 1)
|
272 |
2. These emotions are then used to generate music that matches the mood
|
273 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
with gr.Row():
|
276 |
with gr.Column(scale=3):
|
@@ -278,8 +392,17 @@ with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
|
|
278 |
type="filepath",
|
279 |
label="Upload Image"
|
280 |
)
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
gr.Markdown("### Generation Settings")
|
284 |
|
285 |
with gr.Row():
|
@@ -340,16 +463,18 @@ with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
|
|
340 |
info="Minimum number of instruments in the generated music"
|
341 |
)
|
342 |
|
343 |
-
generate_btn = gr.Button("
|
344 |
|
345 |
# Add examples
|
|
|
|
|
346 |
gr.Examples(
|
347 |
examples=[
|
348 |
-
["
|
349 |
-
["
|
350 |
],
|
351 |
inputs=[image_input, conditioning_type, gen_len, note_temperature, rest_temperature, top_p, min_instruments],
|
352 |
-
label="
|
353 |
)
|
354 |
|
355 |
with gr.Column(scale=2):
|
@@ -367,7 +492,7 @@ with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
|
|
367 |
### About ARIA
|
368 |
|
369 |
ARIA is a deep learning system that generates music from artwork by:
|
370 |
-
1. Using a image
|
371 |
2. Generating matching music using an emotion-conditioned music generation model
|
372 |
|
373 |
The emotion-conditioned MIDI generation model is based on the work by Serkan Sulun et al. in their paper
|
@@ -375,9 +500,15 @@ with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
|
|
375 |
Original implementation: [github.com/serkansulun/midi-emotion](https://github.com/serkansulun/midi-emotion)
|
376 |
|
377 |
### Conditioning Types
|
378 |
-
|
379 |
-
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
""")
|
382 |
|
383 |
def generate_music_wrapper(image, conditioning_type, gen_len, note_temp, rest_temp, top_p, min_instruments):
|
|
|
13 |
import soundfile as sf
|
14 |
from midi2audio import FluidSynth
|
15 |
import spaces
|
16 |
+
from tqdm import tqdm
|
17 |
|
18 |
# Remove CPU forcing since we'll use ZeroGPU
|
19 |
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
|
|
22 |
from aria.image_encoder import ImageEncoder
|
23 |
from aria.aria import ARIA
|
24 |
|
25 |
+
print("=" * 60)
|
26 |
+
print("ARIA - Art to Music Generator")
|
27 |
+
print("=" * 60)
|
28 |
+
print("Initializing model downloads...")
|
29 |
+
sys.stdout.flush()
|
30 |
+
|
31 |
# Pre-download all model files at startup
|
32 |
MODEL_FILES = {
|
33 |
"image_encoder": "image_encoder.pt",
|
|
|
39 |
# Create cache directory
|
40 |
CACHE_DIR = os.path.join(os.path.dirname(__file__), "model_cache")
|
41 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
42 |
+
print(f"Cache directory: {CACHE_DIR}")
|
43 |
+
sys.stdout.flush()
|
44 |
|
45 |
# Download and cache all files
|
46 |
cached_files = {}
|
47 |
+
total_files = sum(len(files) if isinstance(files, list) else 1 for files in MODEL_FILES.values())
|
48 |
+
current_file = 0
|
49 |
+
|
50 |
for model_type, files in MODEL_FILES.items():
|
51 |
+
print(f"\nProcessing {model_type} model files...")
|
52 |
+
sys.stdout.flush()
|
53 |
+
|
54 |
if isinstance(files, str):
|
55 |
files = [files]
|
56 |
|
57 |
cached_files[model_type] = []
|
58 |
for file in files:
|
59 |
+
current_file += 1
|
60 |
+
print(f"[{current_file}/{total_files}] {file}")
|
61 |
+
sys.stdout.flush()
|
62 |
+
|
63 |
try:
|
64 |
# Check if file already exists in cache
|
65 |
repo_id = "vincentamato/aria"
|
66 |
cached_path = os.path.join(CACHE_DIR, repo_id, file)
|
67 |
+
|
68 |
if os.path.exists(cached_path):
|
69 |
+
file_size = os.path.getsize(cached_path) / (1024 * 1024) # MB
|
70 |
+
print(f" Found cached file ({file_size:.1f} MB)")
|
71 |
cached_files[model_type].append(cached_path)
|
72 |
else:
|
73 |
+
print(f" Downloading from HuggingFace Hub...")
|
74 |
+
print(f" Repository: {repo_id}")
|
75 |
+
sys.stdout.flush()
|
76 |
+
|
77 |
+
# Download with progress
|
78 |
cached_path = hf_hub_download(
|
79 |
repo_id=repo_id,
|
80 |
filename=file,
|
81 |
+
cache_dir=CACHE_DIR,
|
82 |
+
# resume_download=True # Enable resume if connection drops
|
83 |
)
|
84 |
+
|
85 |
+
if os.path.exists(cached_path):
|
86 |
+
file_size = os.path.getsize(cached_path) / (1024 * 1024) # MB
|
87 |
+
print(f"Download complete ({file_size:.1f} MB)")
|
88 |
+
cached_files[model_type].append(cached_path)
|
89 |
+
else:
|
90 |
+
print(f"Download failed - file not found")
|
91 |
+
|
92 |
except Exception as e:
|
93 |
+
print(f" Error with file {file}: {str(e)}")
|
94 |
+
sys.stdout.flush()
|
95 |
+
|
96 |
+
print("\n" + "=" * 60)
|
97 |
+
print("Model file preparation complete!")
|
98 |
+
print("=" * 60)
|
99 |
+
sys.stdout.flush()
|
100 |
|
101 |
+
# Check what we actually got
|
102 |
+
for model_type, paths in cached_files.items():
|
103 |
+
print(f"{model_type}: {len(paths)} files ready")
|
104 |
+
|
105 |
+
print(f"\nStarting Gradio application...")
|
106 |
+
sys.stdout.flush()
|
107 |
|
108 |
# Global model cache
|
109 |
models = {}
|
|
|
194 |
return wav_path
|
195 |
|
196 |
try:
|
197 |
+
# Search common soundfont directories for any .sf2 or .sf3 files
|
198 |
+
import glob
|
199 |
+
soundfont_search_dirs = [
|
200 |
+
'C:\\soundfonts\\', # Windows user soundfonts
|
201 |
+
'C:\\Program Files\\FluidSynth\\sf2\\', # Windows FluidSynth installation
|
202 |
+
'/usr/share/sounds/sf2/', # Linux system soundfonts
|
203 |
+
'/usr/share/soundfonts/', # Linux alternative
|
204 |
+
'/usr/local/share/fluidsynth/', # macOS homebrew
|
205 |
+
'/System/Library/Audio/Sounds/Banks/', # macOS system
|
206 |
]
|
207 |
|
208 |
soundfont = None
|
209 |
+
for search_dir in soundfont_search_dirs:
|
210 |
+
if os.path.exists(search_dir):
|
211 |
+
# Look for .sf2 and .sf3 files in this directory
|
212 |
+
for extension in ['*.sf2', '*.sf3']:
|
213 |
+
matches = glob.glob(os.path.join(search_dir, extension))
|
214 |
+
if matches:
|
215 |
+
soundfont = matches[0] # Use first soundfont found
|
216 |
+
break
|
217 |
+
if soundfont:
|
218 |
+
break
|
219 |
|
220 |
if soundfont is None:
|
221 |
+
print(f"No SoundFont found. Audio playback not available.")
|
222 |
+
print(f"MIDI file saved: {midi_path}")
|
223 |
+
print(f"To enable audio: Install FluidSynth and place a .sf2 file in C:\\soundfonts\\")
|
224 |
+
return None
|
225 |
|
226 |
+
# Convert MIDI to WAV using direct FluidSynth command
|
227 |
+
print(f"Converting MIDI to WAV using SoundFont: {soundfont}")
|
228 |
+
|
229 |
+
# Use subprocess to call fluidsynth directly with proper arguments
|
230 |
+
import subprocess
|
231 |
+
cmd = [
|
232 |
+
'fluidsynth',
|
233 |
+
'-ni', # No interactive mode
|
234 |
+
'-g', '0.5', # Gain
|
235 |
+
'-r', '44100', # Sample rate
|
236 |
+
'-F', wav_path, # Output WAV file
|
237 |
+
soundfont, # SoundFont file
|
238 |
+
midi_path # Input MIDI file
|
239 |
+
]
|
240 |
+
|
241 |
+
print(f"FluidSynth command: {' '.join(cmd)}")
|
242 |
+
result = subprocess.run(cmd, capture_output=True, text=True, timeout=60)
|
243 |
+
|
244 |
+
if result.returncode == 0 and os.path.exists(wav_path):
|
245 |
+
print(f"WAV file created: {wav_path}")
|
246 |
+
return wav_path
|
247 |
+
else:
|
248 |
+
print(f"FluidSynth failed with return code: {result.returncode}")
|
249 |
+
print(f"Error output: {result.stderr}")
|
250 |
+
return None
|
251 |
|
|
|
252 |
except Exception as e:
|
253 |
print(f"Error converting MIDI to WAV: {str(e)}")
|
254 |
+
print(f"MIDI file still available: {midi_path}")
|
255 |
return None
|
256 |
|
257 |
@spaces.GPU(duration=120)
|
|
|
263 |
return (
|
264 |
None, # For emotion_chart
|
265 |
None, # For midi_output
|
266 |
+
f"Error: Failed to initialize {conditioning_type} model. Please check the logs."
|
267 |
)
|
268 |
|
269 |
try:
|
|
|
282 |
min_instruments=int(min_instruments)
|
283 |
)
|
284 |
|
285 |
+
# Create emotion plot first (needed for both success and failure cases)
|
286 |
+
plot_path = create_emotion_plot(valence, arousal)
|
287 |
+
|
288 |
# Convert MIDI to WAV
|
289 |
wav_path = convert_midi_to_wav(midi_path)
|
290 |
if wav_path is None:
|
291 |
+
# WAV conversion failed, but we still have MIDI
|
292 |
+
result_text = f"""
|
293 |
+
**Model Type:** {conditioning_type}
|
294 |
+
|
295 |
+
**Predicted Emotions:**
|
296 |
+
- Valence: {valence:.3f} (negative → positive)
|
297 |
+
- Arousal: {arousal:.3f} (calm → excited)
|
298 |
+
|
299 |
+
**Generation Parameters:**
|
300 |
+
- Temperature: {temperature}
|
301 |
+
- Top-p: {top_p}
|
302 |
+
- Min Instruments: {min_instruments}
|
303 |
+
|
304 |
+
**Audio Playback Unavailable**
|
305 |
+
Your music has been generated as a MIDI file, but audio conversion failed.
|
306 |
+
|
307 |
+
**MIDI File:** `{os.path.basename(midi_path)}`
|
308 |
+
|
309 |
+
**To Enable Audio Playback:**
|
310 |
+
1. Install FluidSynth: `choco install fluidsynth` (or download from GitHub)
|
311 |
+
2. Download a SoundFont file (e.g., GeneralUser GS)
|
312 |
+
3. Place it at: `C:\\soundfonts\\generaluser.sf2`
|
313 |
+
|
314 |
+
You can still download and play the MIDI file in any MIDI player!
|
315 |
+
"""
|
316 |
+
# Return MIDI file for download instead of WAV
|
317 |
+
return (plot_path, midi_path, result_text)
|
318 |
|
319 |
+
# Build a nice Markdown result string for successful WAV conversion
|
320 |
result_text = f"""
|
321 |
**Model Type:** {conditioning_type}
|
322 |
|
|
|
339 |
return (
|
340 |
None,
|
341 |
None,
|
342 |
+
f"Error generating music: {str(e)}"
|
343 |
)
|
344 |
|
345 |
def generate_music_wrapper(image, conditioning_type, gen_len, note_temp, rest_temp, top_p, min_instruments):
|
|
|
360 |
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"]
|
361 |
)) as demo:
|
362 |
gr.Markdown("""
|
363 |
+
# ARIA: Artistic Rendering of Images into Audio
|
364 |
|
365 |
Upload an image and ARIA will analyze its emotional content to generate matching music!
|
366 |
|
367 |
+
## How it works:
|
368 |
1. ARIA first analyzes the emotional content of your image along two dimensions:
|
369 |
- **Valence**: How positive or negative the emotion is (-1 to 1)
|
370 |
- **Arousal**: How calm or excited the emotion is (-1 to 1)
|
371 |
2. These emotions are then used to generate music that matches the mood
|
372 |
""")
|
373 |
+
|
374 |
+
# Subtle gradient background for a more modern look
|
375 |
+
gr.HTML(
|
376 |
+
"""
|
377 |
+
<style>
|
378 |
+
body {
|
379 |
+
background: radial-gradient(circle at top left, #0d1117 0%, #06080d 100%);
|
380 |
+
}
|
381 |
+
/* Elevate accordion header visibility */
|
382 |
+
.gr-accordion-summary {
|
383 |
+
font-weight: 600;
|
384 |
+
}
|
385 |
+
</style>
|
386 |
+
"""
|
387 |
+
)
|
388 |
|
389 |
with gr.Row():
|
390 |
with gr.Column(scale=3):
|
|
|
392 |
type="filepath",
|
393 |
label="Upload Image"
|
394 |
)
|
395 |
+
|
396 |
+
# Quick-start guidance so first-time users immediately know what to do
|
397 |
+
gr.Markdown(
|
398 |
+
"## Quick Start\n"
|
399 |
+
"1. **Click an example artwork below** *or* **upload your own image** above.\n"
|
400 |
+
"2. (Optional) Open **Advanced Settings** to fine-tune the generation.\n"
|
401 |
+
"3. Hit **Generate Music** to inference the model!"
|
402 |
+
)
|
403 |
+
|
404 |
+
# Advanced controls are tucked away inside a collapsible panel to keep the UI clean
|
405 |
+
with gr.Accordion("Advanced Settings", open=False):
|
406 |
gr.Markdown("### Generation Settings")
|
407 |
|
408 |
with gr.Row():
|
|
|
463 |
info="Minimum number of instruments in the generated music"
|
464 |
)
|
465 |
|
466 |
+
generate_btn = gr.Button("Generate Music", variant="primary", size="lg")
|
467 |
|
468 |
# Add examples
|
469 |
+
# Dynamic path resolution for local vs HF Spaces deployment
|
470 |
+
examples_dir = "examples" if os.path.exists("examples") else "ARIA/examples"
|
471 |
gr.Examples(
|
472 |
examples=[
|
473 |
+
[f"{examples_dir}/happy.jpg", "continuous_concat", 1024, 1.2, 1.2, 0.6, 2],
|
474 |
+
[f"{examples_dir}/sad.jpeg", "continuous_concat", 1024, 1.2, 1.2, 0.6, 2],
|
475 |
],
|
476 |
inputs=[image_input, conditioning_type, gen_len, note_temperature, rest_temperature, top_p, min_instruments],
|
477 |
+
label="Example Artworks (click to load)"
|
478 |
)
|
479 |
|
480 |
with gr.Column(scale=2):
|
|
|
492 |
### About ARIA
|
493 |
|
494 |
ARIA is a deep learning system that generates music from artwork by:
|
495 |
+
1. Using a image-emotion model to extract emotional content from images
|
496 |
2. Generating matching music using an emotion-conditioned music generation model
|
497 |
|
498 |
The emotion-conditioned MIDI generation model is based on the work by Serkan Sulun et al. in their paper
|
|
|
500 |
Original implementation: [github.com/serkansulun/midi-emotion](https://github.com/serkansulun/midi-emotion)
|
501 |
|
502 |
### Conditioning Types
|
503 |
+
|
504 |
+
**continuous_concat (Recommended)**
|
505 |
+
Creates a single vector from valence and arousal values, repeats it across the sequence, and concatenates it with every music token embedding. This approach gives the emotion information *global influence* throughout the entire generation process, allowing the transformer to access emotional context at every timestep. Research shows this method achieves the best performance in both note prediction accuracy and emotional coherence.
|
506 |
+
|
507 |
+
**continuous_token**
|
508 |
+
Converts each emotion value (valence and arousal) into separate condition vectors with the same length as music token embeddings, then concatenates them in the sequence dimension. The emotion vectors are inserted at the beginning of the input sequence during generation. This treats emotions similarly to music tokens but can lose influence as the sequence grows longer.
|
509 |
+
|
510 |
+
**discrete_token**
|
511 |
+
Quantizes continuous emotion values into 5 discrete bins (very low, low, moderate, high, very high) and converts them into control tokens. These tokens are placed before the music tokens in the sequence. While this represents the current state-of-the-art approach in conditional text generation, it suffers from information loss due to binning and can lose emotional context during longer generations when tokens are truncated.
|
512 |
""")
|
513 |
|
514 |
def generate_music_wrapper(image, conditioning_type, gen_len, note_temp, rest_temp, top_p, min_instruments):
|
aria/aria.py
CHANGED
@@ -31,15 +31,39 @@ class ARIA:
|
|
31 |
conditioning: Type of conditioning to use (continuous_concat, continuous_token, discrete_token)
|
32 |
device: Device to run on (default: auto-detect)
|
33 |
"""
|
34 |
-
# Initialize device
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
print(f"Using device: {self.device}")
|
37 |
self.conditioning = conditioning
|
38 |
|
39 |
# Load image emotion model
|
40 |
self.image_model = ImageEncoder()
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
self.image_model = self.image_model.to(self.device)
|
44 |
self.image_model.eval()
|
45 |
|
@@ -53,8 +77,8 @@ class ARIA:
|
|
53 |
mappings_fp = os.path.join(midi_model_dir, 'mappings.pt')
|
54 |
config_fp = os.path.join(midi_model_dir, 'model_config.pt')
|
55 |
|
56 |
-
self.maps = torch.load(mappings_fp, weights_only=True)
|
57 |
-
config = torch.load(config_fp, weights_only=True)
|
58 |
self.midi_model, _ = build_model(None, load_config_dict=config)
|
59 |
self.midi_model = self.midi_model.to(self.device)
|
60 |
self.midi_model.load_state_dict(torch.load(model_fp, map_location=self.device, weights_only=True))
|
|
|
31 |
conditioning: Type of conditioning to use (continuous_concat, continuous_token, discrete_token)
|
32 |
device: Device to run on (default: auto-detect)
|
33 |
"""
|
34 |
+
# Initialize device - use CPU if CUDA not available
|
35 |
+
if device is not None:
|
36 |
+
self.device = torch.device(device)
|
37 |
+
elif torch.cuda.is_available():
|
38 |
+
self.device = torch.device("cuda")
|
39 |
+
else:
|
40 |
+
self.device = torch.device("cpu")
|
41 |
+
|
42 |
print(f"Using device: {self.device}")
|
43 |
self.conditioning = conditioning
|
44 |
|
45 |
# Load image emotion model
|
46 |
self.image_model = ImageEncoder()
|
47 |
+
try:
|
48 |
+
checkpoint = torch.load(image_model_checkpoint, map_location=self.device, weights_only=True)
|
49 |
+
# Extract only the custom heads from the checkpoint (ignore CLIP model weights)
|
50 |
+
state_dict = {}
|
51 |
+
for key, value in checkpoint["model_state_dict"].items():
|
52 |
+
if key.startswith(('valence_head.', 'arousal_head.')):
|
53 |
+
state_dict[key] = value
|
54 |
+
|
55 |
+
# Initialize the model first so the heads exist
|
56 |
+
self.image_model._ensure_initialized()
|
57 |
+
|
58 |
+
# Load only the custom head weights
|
59 |
+
self.image_model.load_state_dict(state_dict, strict=False)
|
60 |
+
print("ImageEncoder custom heads loaded successfully")
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Warning: Could not load ImageEncoder checkpoint: {e}")
|
63 |
+
print("Using randomly initialized heads")
|
64 |
+
# Initialize anyway with random weights
|
65 |
+
self.image_model._ensure_initialized()
|
66 |
+
|
67 |
self.image_model = self.image_model.to(self.device)
|
68 |
self.image_model.eval()
|
69 |
|
|
|
77 |
mappings_fp = os.path.join(midi_model_dir, 'mappings.pt')
|
78 |
config_fp = os.path.join(midi_model_dir, 'model_config.pt')
|
79 |
|
80 |
+
self.maps = torch.load(mappings_fp, map_location=self.device, weights_only=True)
|
81 |
+
config = torch.load(config_fp, map_location=self.device, weights_only=True)
|
82 |
self.midi_model, _ = build_model(None, load_config_dict=config)
|
83 |
self.midi_model = self.midi_model.to(self.device)
|
84 |
self.midi_model.load_state_dict(torch.load(model_fp, map_location=self.device, weights_only=True))
|
aria/image_encoder.py
CHANGED
@@ -13,9 +13,28 @@ class ImageEncoder(nn.Module):
|
|
13 |
"""
|
14 |
super().__init__()
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Load CLIP model and processor
|
17 |
-
self.clip_model = CLIPModel.from_pretrained(clip_model_name)
|
18 |
-
self.processor = CLIPProcessor.from_pretrained(clip_model_name)
|
|
|
|
|
19 |
|
20 |
# Freeze CLIP parameters
|
21 |
for param in self.clip_model.parameters():
|
@@ -50,6 +69,9 @@ class ImageEncoder(nn.Module):
|
|
50 |
# Move model to GPU if available
|
51 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
self.to(self.device)
|
|
|
|
|
|
|
53 |
|
54 |
def forward(self, images: Union[Image.Image, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
55 |
"""Forward pass to get valence and arousal predictions.
|
@@ -60,6 +82,9 @@ class ImageEncoder(nn.Module):
|
|
60 |
Returns:
|
61 |
Tuple of predicted valence and arousal scores
|
62 |
"""
|
|
|
|
|
|
|
63 |
# Process images if they're PIL images
|
64 |
if isinstance(images, Image.Image):
|
65 |
inputs = self.processor(images=images, return_tensors="pt")
|
@@ -85,6 +110,9 @@ class ImageEncoder(nn.Module):
|
|
85 |
Returns:
|
86 |
Image embedding tensor
|
87 |
"""
|
|
|
|
|
|
|
88 |
inputs = self.processor(images=image, return_tensors="pt")
|
89 |
with torch.no_grad():
|
90 |
image_features = self.clip_model.get_image_features(inputs.pixel_values.to(self.device))
|
|
|
13 |
"""
|
14 |
super().__init__()
|
15 |
|
16 |
+
# Store model name for lazy loading
|
17 |
+
self.clip_model_name = clip_model_name
|
18 |
+
self.clip_model = None
|
19 |
+
self.processor = None
|
20 |
+
self.valence_head = None
|
21 |
+
self.arousal_head = None
|
22 |
+
self.device = None
|
23 |
+
self._initialized = False
|
24 |
+
|
25 |
+
def _ensure_initialized(self):
|
26 |
+
"""Lazy initialization of the model components."""
|
27 |
+
if self._initialized:
|
28 |
+
return
|
29 |
+
|
30 |
+
print(f"Initializing ImageEncoder with {self.clip_model_name}...")
|
31 |
+
print("Downloading CLIP model (this may take a moment)...")
|
32 |
+
|
33 |
# Load CLIP model and processor
|
34 |
+
self.clip_model = CLIPModel.from_pretrained(self.clip_model_name)
|
35 |
+
self.processor = CLIPProcessor.from_pretrained(self.clip_model_name)
|
36 |
+
|
37 |
+
print("CLIP model loaded successfully")
|
38 |
|
39 |
# Freeze CLIP parameters
|
40 |
for param in self.clip_model.parameters():
|
|
|
69 |
# Move model to GPU if available
|
70 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
71 |
self.to(self.device)
|
72 |
+
|
73 |
+
print(f"Model moved to device: {self.device}")
|
74 |
+
self._initialized = True
|
75 |
|
76 |
def forward(self, images: Union[Image.Image, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
77 |
"""Forward pass to get valence and arousal predictions.
|
|
|
82 |
Returns:
|
83 |
Tuple of predicted valence and arousal scores
|
84 |
"""
|
85 |
+
# Ensure model is initialized
|
86 |
+
self._ensure_initialized()
|
87 |
+
|
88 |
# Process images if they're PIL images
|
89 |
if isinstance(images, Image.Image):
|
90 |
inputs = self.processor(images=images, return_tensors="pt")
|
|
|
110 |
Returns:
|
111 |
Image embedding tensor
|
112 |
"""
|
113 |
+
# Ensure model is initialized
|
114 |
+
self._ensure_initialized()
|
115 |
+
|
116 |
inputs = self.processor(images=image, return_tensors="pt")
|
117 |
with torch.no_grad():
|
118 |
image_features = self.clip_model.get_image_features(inputs.pixel_values.to(self.device))
|
requirements.txt
CHANGED
@@ -6,8 +6,10 @@ gradio>=4.0.0
|
|
6 |
matplotlib>=3.7.0
|
7 |
huggingface_hub>=0.19.0
|
8 |
pretty-midi>=0.2.9
|
9 |
-
librosa>=0.10.
|
10 |
soundfile>=0.12.0
|
11 |
midi2audio>=0.1.1
|
12 |
transformers>=4.35.0
|
13 |
-
spaces>=0.32.0
|
|
|
|
|
|
6 |
matplotlib>=3.7.0
|
7 |
huggingface_hub>=0.19.0
|
8 |
pretty-midi>=0.2.9
|
9 |
+
librosa>=0.10.1
|
10 |
soundfile>=0.12.0
|
11 |
midi2audio>=0.1.1
|
12 |
transformers>=4.35.0
|
13 |
+
spaces>=0.32.0
|
14 |
+
numba>=0.60.0
|
15 |
+
llvmlite>=0.43.0
|