import json import pretty_midi import pypianoroll import hdf5_getters from tqdm import tqdm import os import concurrent.futures import collections import utils from glob import glob import pandas as pd import csv from copy import deepcopy """ Written by Serkan Sulun Creates labels for Lakh MIDI (or pianoroll) dataset. Labels include low-level MIDI features such as tempo, note density and number of MIDI files. They also include high-level features obtained from Spotify Developer API, such as valence, energy, etc. See utils.py and fill in the variables client_id and client_secret. When the user quota is exceeded, Spotify blocks access and the script gets stuck. In that case, you may need to re-run the script some time later, or use a different account with different client ID and secret. """ def run_parallel(func, my_iter): # Parallel processing visualized with tqdm with concurrent.futures.ProcessPoolExecutor() as executor: results = list(tqdm(executor.map(func, my_iter), total=len(my_iter))) return results write = False redo = True main_output_dir = "../../data_files/features" os.makedirs(main_output_dir, exist_ok=True) match_scores_path = "../../data_files/match_scores.json" msd_summary_path = "../../data_files/msd_summary_file.h5" echonest_folder_path = "../../data_files/millionsongdataset_echonest" use_pianoroll_dataset = True if use_pianoroll_dataset: midi_dataset_path = "../../data_files/lpd_full/lpd/lpd_full" extension = ".npz" output_dir = os.path.join(main_output_dir, "pianoroll") else: midi_dataset_path = "lmd_full" extension = ".mid" output_dir = os.path.join(main_output_dir, "midi") os.makedirs(output_dir, exist_ok=True) ### PART I: Map track_ids (in midi dataset) to Spotify features ### 1- Create mappings track_id (in midi dataset) -> metadata (in Echonest) output_path = os.path.join(output_dir, "trackid_to_songid.json") with open(match_scores_path, "r") as f: match_scores = json.load(f) track_ids = sorted(list(match_scores.keys())) if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: trackid_to_songid = json.load(f) else: h5_msd = hdf5_getters.open_h5_file_read(msd_summary_path) n_msd = hdf5_getters.get_num_songs(h5_msd) trackid_to_songid = {} print("Adding metadata to each track in Lakh dataset") for i in tqdm(range(n_msd)): track_id = hdf5_getters.get_track_id(h5_msd, i).decode("utf-8") if track_id in track_ids: # get data from MSD song_id = hdf5_getters.get_song_id(h5_msd, i).decode("utf-8") artist = hdf5_getters.get_artist_name(h5_msd, i).decode("utf-8") title = hdf5_getters.get_title(h5_msd, i).decode("utf-8") release = hdf5_getters.get_release(h5_msd, i).decode("utf-8") trackid_to_songid[track_id] = {"song_id": song_id,"title": title, "artist": artist, "release": release} # sort trackid_to_songid = collections.OrderedDict(sorted(trackid_to_songid.items())) if write: with open(output_path, "w") as f: json.dump(trackid_to_songid, f, indent=4) print(f"Output saved to {output_path}") ### 2- Create mappings metadata (in Echonest) -> Spotify IDs output_path = os.path.join(output_dir, "songid_to_spotify.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: songid_to_spotify = json.load(f) else: song_ids = sorted([val["song_id"] for val in trackid_to_songid.values()]) songid_to_spotify = {} print("Mapping Echonest song IDs to Spotify song IDs") for song_id in tqdm(song_ids): file_path = os.path.join(echonest_folder_path, song_id[2:4], song_id + ".json") spotify_ids = utils.get_spotify_ids(file_path) songid_to_spotify[song_id] = spotify_ids if write: with open(output_path, "w") as f: json.dump(songid_to_spotify, f, indent=4) print(f"Output saved to {output_path}") ### 3- Merge and add Spotify features output_path = os.path.join(output_dir, "trackid_to_spotify_features.json") # When user quota is exceeded, Spotify blocks access and the script gets stuck. # In that case, you may need to re-run the script some time later, # or use a different account with different client ID and secret. # So we keep an incomplete csv file, so that we can continue later from where we left. output_path_incomplete = os.path.join(output_dir, "incomplete_trackid_to_spotify_features.csv") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: trackid_to_spotify_features = json.load(f) else: fieldnames = ["track_id", "song_id", "title", "artist", "release", "spotify_id", "spotify_title", "spotify_artist", "spotify_album", "spotify_audio_features"] data_to_process = deepcopy(trackid_to_songid) write_header = True if os.path.exists(output_path_incomplete): # Continue from where we've left data_already_processed = utils.read_csv(output_path_incomplete) track_ids_already_processed = [entry["track_id"] for entry in data_already_processed] data_to_process = {key: value for key, value in data_to_process.items() if key not in track_ids_already_processed} write_header = False with open(output_path_incomplete, "a") as f_out: csv_writer = csv.DictWriter(f_out, fieldnames=fieldnames) if write_header: csv_writer.writeheader() print("Adding Spotify features") for track_id, data in tqdm(data_to_process.items()): data["track_id"] = track_id album = data["release"] spotify_ids = songid_to_spotify[data["song_id"]] if spotify_ids == []: # use metadata to search spotify best_spotify_track = utils.search_spotify_flexible(data["title"], data["artist"], data["release"]) else: spotify_tracks = utils.get_spotify_tracks(spotify_ids) if spotify_tracks == None: for key in ["id", "title", "artist", "album", "audio_features"]: data["spotify_" + key] = None elif len(spotify_tracks) > 1: # find best spotify id by comparing album names best_match_score = 0 best_match_ind = 0 for i, track in enumerate(spotify_tracks): if track is not None: spotify_album = track["album"]["name"] if track is not None else "" match_score = utils.matching_strings_flexible(album, spotify_album) if match_score > best_match_score: best_match_score = match_score best_match_ind = i best_spotify_track = spotify_tracks[best_match_ind] else: best_spotify_track = spotify_tracks[0] if best_spotify_track is not None: spotify_id = best_spotify_track["uri"].split(":")[-1] spotify_audio_features = utils.get_spotify_features(spotify_id)[0] # if spotify_audio_features["valence"] == 0.0: # # A large portion of files have 0.0 valence, although they are NaNs # spotify_audio_features["valence"] = float("nan") spotify_artists = ", ".join([artist["name"] for artist in best_spotify_track["artists"]]) data["spotify_id"] = spotify_id data["spotify_title"] = best_spotify_track['name'] data["spotify_artist"] = spotify_artists data["spotify_album"] = best_spotify_track["album"]["name"] data["spotify_audio_features"] = spotify_audio_features else: for key in ["id", "title", "artist", "album", "audio_features"]: data["spotify_" + key] = None csv_writer.writerow(data) # Now write final data to json trackid_to_spotify_features_list = utils.read_csv(output_path_incomplete) trackid_to_spotify_features = {} # unlike json, csv doesnt support dict within dict, so convert it to dict manually for item in trackid_to_spotify_features_list: spotify_audio_features = item["spotify_audio_features"] if spotify_audio_features != "": spotify_audio_features = eval(spotify_audio_features) item["spotify_audio_features"] = spotify_audio_features track_id = deepcopy(item["track_id"]) del item["track_id"] trackid_to_spotify_features[track_id] = item if write: with open(output_path, "w") as f: json.dump(trackid_to_spotify_features, f, indent=4) print(f"Output saved to {output_path}") ### PART II: Dealing with symbolic music data ### 4- Revert matching scores """ Matched data has the format: track_ID -> midi_file where multiple tracks could be mapped to a single midi file. We want to revert this mapping and then keep unique midi files Revert match scores file to have mapping midi_file -> track_ID """ output_path = os.path.join(output_dir, "match_scores_reverse.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: match_scores_reversed = json.load(f) else: with open(match_scores_path, "r") as f: in_data = json.load(f) match_scores_reversed = {} print("Reversing match scores.") for track_id, matching in tqdm(in_data.items()): for file_, score in matching.items(): if file_ not in match_scores_reversed.keys(): match_scores_reversed[file_] = {track_id: score} else: match_scores_reversed[file_][track_id] = score # order match scores for k in match_scores_reversed.keys(): match_scores_reversed[k] = collections.OrderedDict(sorted(match_scores_reversed[k].items(), reverse=True, key=lambda x: x[-1])) # order filenames match_scores_reversed = collections.OrderedDict(sorted(match_scores_reversed.items(), key=lambda x: x[0])) if write: with open(output_path, "w") as f: json.dump(match_scores_reversed, f, indent=4) print(f"Output saved to {output_path}") # 5- Filter match scores to only keep best match output_path = os.path.join(output_dir, "best_match_scores.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: best_match_scores_reversed = json.load(f) else: best_match_scores_reversed = {} print("Selecting best matching tracks.") for midi_file, match in tqdm(match_scores_reversed.items()): best_match_scores_reversed[midi_file] = list(match.items())[0] if write: with open(output_path, "w") as f: json.dump(best_match_scores_reversed, f, indent=4) print(f"Output saved to {output_path}") ### 6- Filter unique midis """LMD was created by creating hashes for the entire files and then keeping files with unique hashes. However, some files' musical content are the same, and only their metadata are different. So we hash the content (pianoroll array), and further filter out the unique ones.""" # Create hashes for midis output_path = os.path.join(output_dir, "hashes.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: midi_file_to_hash = json.load(f) else: def get_hash_and_file(path): hash_ = utils.get_hash(path) file_ = os.path.basename(path) file_ = file_[:-4] return [file_, hash_] file_paths = sorted(glob(midi_dataset_path + "/**/*" + extension, recursive=True)) assert len(file_paths) > 0, f"No MIDI files found at {midi_dataset_path}" print("Getting hashes for MIDIs.") midi_file_to_hash = run_parallel(get_hash_and_file, file_paths) midi_file_to_hash = sorted(midi_file_to_hash, key=lambda x:x[0]) midi_file_to_hash = dict(midi_file_to_hash) if write: with open(output_path, "w") as f: json.dump(midi_file_to_hash, f, indent=4) print(f"Output saved to {output_path}") # also do the reverse hash -> midi output_path = os.path.join(output_dir, "unique_files.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: midi_files_unique = json.load(f) else: hash_to_midi_file = {} for midi_file, hash in midi_file_to_hash.items(): try: best_match_score = best_match_scores_reversed[midi_file][1] except: best_match_score = 0 if hash in hash_to_midi_file.keys(): hash_to_midi_file[hash].append((midi_file, best_match_score)) else: hash_to_midi_file[hash] = [(midi_file, best_match_score)] midi_files_unique = [] # Get unique midis (with highest match score) print("Getting unique MIDIs.") for hash, midi_files_and_match_scores in hash_to_midi_file.items(): if hash != "empty_pianoroll": midi_files_and_match_scores = sorted(midi_files_and_match_scores, key=lambda x: x[1], reverse=True) midi_files_unique.append(midi_files_and_match_scores[0][0]) if write: with open(output_path, "w") as f: json.dump(midi_files_unique, f, indent=4) print(f"Output saved to {output_path}") # create unique matched midis list midi_files_matched = list(match_scores_reversed.keys()) output_path = os.path.join(output_dir, "midis_matched_unique.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: midi_files_matched_unique = json.load(f) else: print("Getting unique matched MIDIs.") midi_files_matched_unique = sorted(list(set(midi_files_matched).intersection(midi_files_unique))) if write: with open(output_path, "w") as f: json.dump(midi_files_matched_unique, f, indent=4) print(f"Output saved to {output_path}") # create unique unmatched midis list output_path = os.path.join(output_dir, "midis_unmatched_unique.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: midi_files_unmatched_unique = json.load(f) else: print("Getting unique unmatched MIDIs.") midi_files_unmatched_unique = sorted(list(set(midi_files_unique) - set(midi_files_matched_unique))) if write: with open(output_path, "w") as f: json.dump(midi_files_unmatched_unique, f, indent=4) print(f"Output saved to {output_path}") ### 6- Create mappings: midi -> best matching track ID, spotify features output_path = os.path.join(output_dir, "spotify_features.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: midi_file_to_spotify_features = json.load(f) else: midi_file_to_spotify_features = {} print("Adding Spotify for matched unique MIDIs.") for pr in tqdm(midi_files_matched_unique): sample_data = {} sample_data["track_id"], sample_data["match_score"] = best_match_scores_reversed[pr] metadata_and_spotify = trackid_to_spotify_features[sample_data["track_id"]] sample_data.update(metadata_and_spotify) midi_file_to_spotify_features[pr] = sample_data if write: with open(output_path, "w") as f: json.dump(midi_file_to_spotify_features, f, indent=4) print(f"Output saved to {output_path}") ### 7- For all midis, get low level features # (tempo, note density, number of instruments) output_path = os.path.join(output_dir, "midi_features.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: midi_file_to_midi_features = json.load(f) else: def get_midi_features(midi_file): midi_path = os.path.join(midi_dataset_path, midi_file[0], midi_file + extension) if use_pianoroll_dataset: mid = pypianoroll.load(midi_path).to_pretty_midi() else: mid = pretty_midi.PrettyMIDI(midi_path) note_density = utils.get_note_density(mid) tempo = utils.get_tempo(mid) n_instruments = utils.get_n_instruments(mid) duration = mid.get_end_time() midi_features = { "note_density": note_density, "tempo": tempo, "n_instruments": n_instruments, "duration": duration, } return [midi_file, midi_features] print("Getting low-level MIDI features") midi_file_to_midi_features = run_parallel(get_midi_features, midi_files_unique) midi_file_to_midi_features = dict(midi_file_to_midi_features) if write: with open(output_path, "w") as f: json.dump(midi_file_to_midi_features, f, indent=4) print(f"Output saved to {output_path}") ### 8- Merge MIDI features and matched (Spotify) features output_path = os.path.join(output_dir, "full_dataset_features.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: midi_file_to_merged_features = json.load(f) else: midi_file_to_merged_features = {} print("Merging MIDI features and Spotify features for full dataset.") for midi_file in tqdm(midi_file_to_midi_features.keys()): midi_file_to_merged_features[midi_file] = {} midi_file_to_merged_features[midi_file]["midi_features"] = midi_file_to_midi_features[midi_file] if midi_file in midi_file_to_spotify_features.keys(): matched_features = midi_file_to_spotify_features[midi_file] else: matched_features = {} midi_file_to_merged_features[midi_file]["matched_features"] = matched_features if write: with open(output_path, "w") as f: json.dump(midi_file_to_merged_features, f, indent=4) print(f"Output saved to {output_path}") ### Do the same for matched dataset output_path = os.path.join(output_dir, "matched_dataset_features.json") if os.path.exists(output_path) and not redo: with open(output_path, "r") as f: matched_midi_file_to_merged_features = json.load(f) else: print("Merging MIDI features and Spotify features for the matched dataset.") matched_midi_file_to_merged_features = \ {file_: midi_file_to_merged_features[file_] for file_ in tqdm(midi_files_matched_unique)} if write: with open(output_path, "w") as f: json.dump(matched_midi_file_to_merged_features, f, indent=4) print(f"Output saved to {output_path}") ### PART III: Constructing training dataset ### 9- Summarize matched dataset features by only taking valence and note densities per instrument, # number of instruments, durations, is_matched output_path = os.path.join(output_dir, "full_dataset_features_summarized.csv") if not os.path.exists(output_path) or redo: print("Constructing training dataset (final file)") dataset_summarized = [] for midi_file, features in tqdm(midi_file_to_merged_features.items()): midi_features = features["midi_features"] n_instruments = midi_features["n_instruments"] note_density_per_instrument = midi_features["note_density"] / n_instruments matched_features = features["matched_features"] if matched_features == {}: is_matched = False valence = float("nan") else: is_matched = True spotify_audio_features = matched_features["spotify_audio_features"] if spotify_audio_features is None or spotify_audio_features == "": valence = float("nan") else: if spotify_audio_features["valence"] == 0.0: # An unusual number of samples have a valence of 0.0 # which is possibly due to an error. Feel free to comment out. valence = float("nan") else: valence = spotify_audio_features["valence"] dataset_summarized.append({ "file": midi_file, "is_matched": is_matched, "n_instruments": n_instruments, "note_density_per_instrument": note_density_per_instrument, "valence": valence }) dataset_summarized = pd.DataFrame(dataset_summarized) if write: dataset_summarized.to_csv(output_path, index=False) print(f"Output saved to {output_path}")