vincentmin commited on
Commit
0268ea7
·
1 Parent(s): 45e331f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -29,7 +29,7 @@ document_prompt = PromptTemplate(
29
  )
30
  prompt = PromptTemplate(
31
  template=
32
- """Write a personalised newsletter for a researcher. The researcher describes his work as follows:"{context}". Base the newsletter on the following articles:\n\n"{text}"\n\nNEWSLETTER:\n#Your AI curated newsletter\n""",
33
  input_variables=["context", "text"])
34
 
35
  # llm = FakeListLLM(responses=list(map(str, range(100))))
@@ -58,6 +58,7 @@ def process_document(doc: Document):
58
  return Document(page_content=doc.metadata["Summary"], metadata=metadata)
59
 
60
  def get_data(user_query: str):
 
61
  docs = loader.load()
62
  docs = [process_document(doc) for doc in docs]
63
  db = Chroma.from_documents(docs, embeddings)
@@ -69,7 +70,8 @@ def get_data(user_query: str):
69
  articles += f"**Title: {doc.metadata['Title']}**\n\nAbstract: {doc.metadata['Summary']}\n\n"
70
  output = stuff_chain({"input_documents": relevant_docs, "context": user_query})
71
  output_text = output["output_text"].split("<|end|>")[0]
72
- return f"#Your AI curated newsletter\n{output['output_text']}\n\n\n\nUsed articles:\n\n{articles}"
 
73
 
74
  demo = gr.Interface(
75
  fn=get_data,
 
29
  )
30
  prompt = PromptTemplate(
31
  template=
32
+ """Write a personalised newsletter for a researcher on the most recent exciting developments in his field. The researcher describes his work as follows:"{context}". Base the newsletter on the articles below. Extract the most exciting points and combine them into an excillerating newsletter.\n#ARTICLES\n\n"{text}"\n\nNEWSLETTER:\n# Your AI curated newsletter\n""",
33
  input_variables=["context", "text"])
34
 
35
  # llm = FakeListLLM(responses=list(map(str, range(100))))
 
58
  return Document(page_content=doc.metadata["Summary"], metadata=metadata)
59
 
60
  def get_data(user_query: str):
61
+ print("User query:", user_query)
62
  docs = loader.load()
63
  docs = [process_document(doc) for doc in docs]
64
  db = Chroma.from_documents(docs, embeddings)
 
70
  articles += f"**Title: {doc.metadata['Title']}**\n\nAbstract: {doc.metadata['Summary']}\n\n"
71
  output = stuff_chain({"input_documents": relevant_docs, "context": user_query})
72
  output_text = output["output_text"].split("<|end|>")[0]
73
+ print("LLM output:", output_text)
74
+ return f"# Your AI curated newsletter\n{output['output_text']}\n\n\n\n## Used articles:\n\n{articles}"
75
 
76
  demo = gr.Interface(
77
  fn=get_data,