Spaces:
Sleeping
Sleeping
Refactor app
Browse files- app.py +4 -4
- document_retriever.py +3 -1
app.py
CHANGED
@@ -8,6 +8,8 @@ from calback_handler import PrintRetrievalHandler, StreamHandler
|
|
8 |
from chat_profile import ChatProfileRoleEnum
|
9 |
from document_retriever import configure_retriever
|
10 |
|
|
|
|
|
11 |
st.set_page_config(
|
12 |
page_title="InkChatGPT: Chat with Documents",
|
13 |
page_icon="π",
|
@@ -58,9 +60,7 @@ with settings_tab:
|
|
58 |
msgs.add_ai_message("""
|
59 |
Hi, your uploaded document(s) had been analyzed.
|
60 |
|
61 |
-
Feel free to ask me any questions.
|
62 |
-
|
63 |
-
For example: you can start by asking me 'What is the title of the book, and who is author!'
|
64 |
""")
|
65 |
|
66 |
with documents_tab:
|
@@ -83,7 +83,7 @@ with chat_tab:
|
|
83 |
|
84 |
# Setup LLM and QA chain
|
85 |
llm = ChatOpenAI(
|
86 |
-
model_name=
|
87 |
openai_api_key=openai_api_key,
|
88 |
temperature=0,
|
89 |
streaming=True,
|
|
|
8 |
from chat_profile import ChatProfileRoleEnum
|
9 |
from document_retriever import configure_retriever
|
10 |
|
11 |
+
LLM_MODEL = "gpt-3.5-turbo"
|
12 |
+
|
13 |
st.set_page_config(
|
14 |
page_title="InkChatGPT: Chat with Documents",
|
15 |
page_icon="π",
|
|
|
60 |
msgs.add_ai_message("""
|
61 |
Hi, your uploaded document(s) had been analyzed.
|
62 |
|
63 |
+
Feel free to ask me any questions. For example: you can start by asking me `'What is this book about?` or `Tell me about the content of this book!`'
|
|
|
|
|
64 |
""")
|
65 |
|
66 |
with documents_tab:
|
|
|
83 |
|
84 |
# Setup LLM and QA chain
|
85 |
llm = ChatOpenAI(
|
86 |
+
model_name=LLM_MODEL,
|
87 |
openai_api_key=openai_api_key,
|
88 |
temperature=0,
|
89 |
streaming=True,
|
document_retriever.py
CHANGED
@@ -9,6 +9,8 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
9 |
from langchain_community.vectorstores import DocArrayInMemorySearch
|
10 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
11 |
|
|
|
|
|
12 |
|
13 |
@st.cache_resource(ttl="1h")
|
14 |
def configure_retriever(files, use_compression=False):
|
@@ -40,7 +42,7 @@ def configure_retriever(files, use_compression=False):
|
|
40 |
splits = text_splitter.split_documents(docs)
|
41 |
|
42 |
# Create embeddings and store in vectordb
|
43 |
-
embeddings = HuggingFaceEmbeddings(model_name=
|
44 |
vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings)
|
45 |
|
46 |
# Define retriever
|
|
|
9 |
from langchain_community.vectorstores import DocArrayInMemorySearch
|
10 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
11 |
|
12 |
+
EMBEDDING_MODEL = "all-MiniLM-L6-v2"
|
13 |
+
|
14 |
|
15 |
@st.cache_resource(ttl="1h")
|
16 |
def configure_retriever(files, use_compression=False):
|
|
|
42 |
splits = text_splitter.split_documents(docs)
|
43 |
|
44 |
# Create embeddings and store in vectordb
|
45 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
46 |
vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings)
|
47 |
|
48 |
# Define retriever
|