Spaces:
Running
Running
File size: 17,547 Bytes
ca46f55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import gradio as gr
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras import backend as K
import matplotlib.pyplot as plt
from PIL import Image
import io
import cv2
import glob
import matplotlib
import torch
import tempfile
from gradio_imageslider import ImageSlider
import plotly.graph_objects as go
import plotly.express as px
import open3d as o3d
from depth_anything_v2.dpt import DepthAnythingV2
# --- Load models ---
# Wound classification model
try:
wound_model = load_model("checkpoints/keras_model.h5")
with open("labels.txt", "r") as f:
class_labels = [line.strip() for line in f]
except:
wound_model = None
class_labels = ["No model found"]
# Depth estimation model
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder = 'vitl'
try:
depth_model = DepthAnythingV2(**model_configs[encoder])
state_dict = torch.load(f'checkpoints/depth_anything_v2_{encoder}.pth', map_location="cpu")
depth_model.load_state_dict(state_dict)
depth_model = depth_model.to(DEVICE).eval()
except:
depth_model = None
# --- Wound Classification Functions ---
def preprocess_input(img):
img = img.resize((224, 224))
arr = keras_image.img_to_array(img)
arr = arr / 255.0
return np.expand_dims(arr, axis=0)
def get_gradcam_heatmap(img_array, model, class_index, last_conv_layer_name="conv5_block3_out"):
try:
target_layer = model.get_layer(last_conv_layer_name)
except:
for layer in model.layers:
if 'conv' in layer.name.lower():
target_layer = layer
break
else:
return None
grad_model = tf.keras.models.Model(
[model.inputs], [target_layer.output, model.output]
)
with tf.GradientTape() as tape:
conv_outputs, predictions = grad_model(img_array)
loss = predictions[:, class_index]
grads = tape.gradient(loss, conv_outputs)
if grads is None:
return None
grads = grads[0]
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
conv_outputs = conv_outputs[0]
heatmap = tf.reduce_sum(tf.multiply(pooled_grads, conv_outputs), axis=-1)
heatmap = np.maximum(heatmap, 0)
heatmap = heatmap / np.max(heatmap + K.epsilon())
return heatmap.numpy()
def overlay_gradcam(original_img, heatmap):
if heatmap is None:
return original_img
heatmap = cv2.resize(heatmap, original_img.size)
heatmap = np.maximum(heatmap, 0)
if np.max(heatmap) != 0:
heatmap /= np.max(heatmap)
heatmap = np.uint8(255 * heatmap)
heatmap_color = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
original_array = np.array(original_img.convert("RGB"))
superimposed_img = cv2.addWeighted(original_array, 0.6, heatmap_color, 0.4, 0)
return Image.fromarray(superimposed_img)
def classify_and_explain(img):
if img is None or wound_model is None:
return None, {}, "No image provided or model not available"
img_array = preprocess_input(img)
predictions = wound_model.predict(img_array, verbose=0)[0]
pred_idx = int(np.argmax(predictions))
pred_class = class_labels[pred_idx]
confidence_dict = {class_labels[i]: float(predictions[i]) for i in range(len(class_labels))}
try:
heatmap = get_gradcam_heatmap(img_array, wound_model, pred_idx)
gradcam_img = overlay_gradcam(img.resize((224, 224)), heatmap)
except Exception as e:
print(f"Grad-CAM error: {e}")
gradcam_img = img.resize((224, 224))
return gradcam_img, confidence_dict
def create_confidence_bars(confidence_dict):
html_content = "<div class='confidence-container'>"
for class_name, confidence in confidence_dict.items():
percentage = confidence * 100
if percentage > 70:
css_class = "confidence-high"
elif percentage > 40:
css_class = "confidence-medium"
else:
css_class = "confidence-low"
html_content += f"""
<div style='margin: 12px 0;'>
<div style='display: flex; justify-content: space-between; margin-bottom: 8px;'>
<span style='font-weight: bold;'>{class_name}</span>
<span style='font-weight: bold;'>{percentage:.1f}%</span>
</div>
<div class='confidence-bar {css_class}' style='width: {percentage}%;'></div>
</div>
"""
html_content += "</div>"
return html_content
def enhanced_classify_and_explain(img):
if img is None:
return None, "No image provided", 0, ""
gradcam_img, confidence_dict = classify_and_explain(img)
if isinstance(confidence_dict, str): # Error case
return None, confidence_dict, 0, ""
pred_class = max(confidence_dict, key=confidence_dict.get)
confidence = confidence_dict[pred_class]
confidence_bars_html = create_confidence_bars(confidence_dict)
return gradcam_img, pred_class, confidence, confidence_bars_html
# --- Depth Estimation Functions ---
def predict_depth(image):
if depth_model is None:
return None
return depth_model.infer_image(image)
def calculate_max_points(image):
if image is None:
return 10000
h, w = image.shape[:2]
max_points = h * w * 3
return max(1000, min(max_points, 1000000))
def update_slider_on_image_upload(image):
max_points = calculate_max_points(image)
default_value = min(10000, max_points // 10)
return gr.Slider(minimum=1000, maximum=max_points, value=default_value, step=1000,
label=f"Number of 3D points (max: {max_points:,})")
def create_point_cloud(image, depth_map, focal_length_x=470.4, focal_length_y=470.4, max_points=100000):
h, w = depth_map.shape
step = max(1, int(np.sqrt(h * w / max_points)))
y_coords, x_coords = np.mgrid[0:h:step, 0:w:step]
x_cam = (x_coords - w / 2) / focal_length_x
y_cam = (y_coords - h / 2) / focal_length_y
depth_values = depth_map[::step, ::step]
x_3d = x_cam * depth_values
y_3d = y_cam * depth_values
z_3d = depth_values
points = np.stack([x_3d.flatten(), y_3d.flatten(), z_3d.flatten()], axis=1)
image_colors = image[::step, ::step, :]
colors = image_colors.reshape(-1, 3) / 255.0
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors)
return pcd
def create_enhanced_3d_visualization(image, depth_map, max_points=10000):
h, w = depth_map.shape
step = max(1, int(np.sqrt(h * w / max_points)))
y_coords, x_coords = np.mgrid[0:h:step, 0:w:step]
focal_length = 470.4
x_cam = (x_coords - w / 2) / focal_length
y_cam = (y_coords - h / 2) / focal_length
depth_values = depth_map[::step, ::step]
x_3d = x_cam * depth_values
y_3d = y_cam * depth_values
z_3d = depth_values
x_flat = x_3d.flatten()
y_flat = y_3d.flatten()
z_flat = z_3d.flatten()
image_colors = image[::step, ::step, :]
colors_flat = image_colors.reshape(-1, 3)
fig = go.Figure(data=[go.Scatter3d(
x=x_flat,
y=y_flat,
z=z_flat,
mode='markers',
marker=dict(
size=1.5,
color=colors_flat,
opacity=0.9
),
hovertemplate='<b>3D Position:</b> (%{x:.3f}, %{y:.3f}, %{z:.3f})<br>' +
'<b>Depth:</b> %{z:.2f}<br>' +
'<extra></extra>'
)])
fig.update_layout(
title="3D Point Cloud Visualization (Camera Projection)",
scene=dict(
xaxis_title="X (meters)",
yaxis_title="Y (meters)",
zaxis_title="Z (meters)",
camera=dict(
eye=dict(x=2.0, y=2.0, z=2.0),
center=dict(x=0, y=0, z=0),
up=dict(x=0, y=0, z=1)
),
aspectmode='data'
),
width=700,
height=600
)
return fig
def on_depth_submit(image, num_points, focal_x, focal_y):
if image is None or depth_model is None:
return None, None, None, None, None
original_image = image.copy()
h, w = image.shape[:2]
depth = predict_depth(image[:, :, ::-1])
if depth is None:
return None, None, None, None, None
raw_depth = Image.fromarray(depth.astype('uint16'))
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth.save(tmp_raw_depth.name)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.astype(np.uint8)
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
gray_depth = Image.fromarray(depth)
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
gray_depth.save(tmp_gray_depth.name)
pcd = create_point_cloud(original_image, depth, focal_x, focal_y, max_points=num_points)
tmp_pointcloud = tempfile.NamedTemporaryFile(suffix='.ply', delete=False)
o3d.io.write_point_cloud(tmp_pointcloud.name, pcd)
depth_3d = create_enhanced_3d_visualization(original_image, depth, max_points=num_points)
return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name, tmp_pointcloud.name, depth_3d]
# --- Custom CSS for Unified Interface ---
css = """
/* Minimal dark theme styling */
.main-header {
text-align: center;
margin-bottom: 2rem;
padding: 2rem 0;
}
.main-header h1 {
font-size: 2.5rem;
margin-bottom: 0.5rem;
font-weight: 600;
}
.main-header p {
font-size: 1.1rem;
opacity: 0.8;
}
.section-title {
font-size: 1.2rem;
font-weight: 600;
margin-bottom: 15px;
padding-bottom: 8px;
border-bottom: 1px solid var(--border-color-primary);
}
.confidence-container {
margin: 15px 0;
padding: 15px;
border-radius: 8px;
background: var(--background-secondary);
border: 1px solid var(--border-color-primary);
}
.confidence-bar {
height: 20px;
border-radius: 4px;
margin: 6px 0;
background: var(--primary-500);
transition: width 0.3s ease;
}
/* Simple confidence bar colors */
.confidence-high {
background: var(--success-500);
}
.confidence-medium {
background: var(--warning-500);
}
.confidence-low {
background: var(--error-500);
}
/* Minimal spacing and layout */
.gradio-container {
max-width: 100%;
margin: 0;
padding: 20px;
width: 100%;
}
/* Clean image styling */
.gradio-image {
border-radius: 8px;
border: 1px solid var(--border-color-primary);
}
/* Simple button styling */
.gradio-button {
border-radius: 6px;
font-weight: 500;
}
/* Clean form elements */
.gradio-textbox, .gradio-number, .gradio-slider {
border-radius: 6px;
border: 1px solid var(--border-color-primary);
}
/* Tab styling */
.gradio-tabs {
border-radius: 8px;
overflow: hidden;
}
/* File upload styling */
.gradio-file {
border-radius: 6px;
border: 1px solid var(--border-color-primary);
}
/* Plot styling */
.gradio-plot {
border-radius: 8px;
border: 1px solid var(--border-color-primary);
}
/* Full width and height layout */
body, html {
margin: 0;
padding: 0;
width: 100%;
height: 100%;
}
#root {
width: 100%;
height: 100%;
}
/* Ensure Gradio uses full width */
.gradio-container {
min-height: 100vh;
}
/* Responsive adjustments */
@media (max-width: 768px) {
.main-header h1 {
font-size: 2rem;
}
.gradio-container {
padding: 10px;
}
}
"""
# --- Create Unified Interface ---
with gr.Blocks(css=css, title="Medical AI Suite") as demo:
gr.HTML("""
<div class="main-header">
<h1>Medical AI Suite</h1>
<p>Advanced AI-powered medical image analysis and 3D visualization</p>
</div>
""")
with gr.Tabs() as tabs:
# Tab 1: Wound Classification
with gr.TabItem("Wound Classification", id=0):
gr.HTML("<div class='section-title'>Wound Classification with Grad-CAM Visualization</div>")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<div class='section-title'>Input Image</div>")
wound_input_image = gr.Image(
label="Upload wound image",
type="pil",
height=350,
container=True
)
with gr.Column(scale=1):
gr.HTML("<div class='section-title'>Analysis Results</div>")
wound_prediction_output = gr.Textbox(
label="Predicted Wound Type",
interactive=False,
container=True
)
wound_confidence_output = gr.Number(
label="Confidence Score",
interactive=False,
container=True
)
wound_confidence_bars = gr.HTML(
label="Confidence Scores by Class",
container=True
)
with gr.Row():
with gr.Column():
gr.HTML("<div class='section-title'>Model Focus Visualization</div>")
wound_cam_output = gr.Image(
label="Grad-CAM Heatmap - Shows which areas the model focused on",
height=350,
container=True
)
# Event handlers for wound classification
wound_input_image.change(
fn=enhanced_classify_and_explain,
inputs=[wound_input_image],
outputs=[wound_cam_output, wound_prediction_output, wound_confidence_output, wound_confidence_bars]
)
# Tab 2: Depth Estimation
with gr.TabItem("Depth Estimation & 3D Visualization", id=1):
gr.HTML("<div class='section-title'>Depth Estimation and 3D Point Cloud Generation</div>")
with gr.Row():
depth_input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output')
with gr.Row():
depth_submit = gr.Button(value="Compute Depth", variant="primary")
depth_points_slider = gr.Slider(minimum=1000, maximum=10000, value=10000, step=1000,
label="Number of 3D points (upload image to update max)")
with gr.Row():
depth_focal_length_x = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10,
label="Focal Length X (pixels)")
depth_focal_length_y = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10,
label="Focal Length Y (pixels)")
with gr.Row():
depth_gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download")
depth_raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download")
depth_point_cloud_file = gr.File(label="Point Cloud (.ply)", elem_id="download")
gr.Markdown("### 3D Point Cloud Visualization")
gr.Markdown("Enhanced 3D visualization using proper camera projection. Hover over points to see 3D coordinates.")
depth_3d_plot = gr.Plot(label="3D Point Cloud")
# Event handlers for depth estimation
depth_input_image.change(
fn=update_slider_on_image_upload,
inputs=[depth_input_image],
outputs=[depth_points_slider]
)
depth_submit.click(
on_depth_submit,
inputs=[depth_input_image, depth_points_slider, depth_focal_length_x, depth_focal_length_y],
outputs=[depth_image_slider, depth_gray_depth_file, depth_raw_file, depth_point_cloud_file, depth_3d_plot]
)
# Cross-tab image sharing functionality
# When image is uploaded in wound classification, also update depth estimation
wound_input_image.change(
fn=lambda img: img,
inputs=[wound_input_image],
outputs=[depth_input_image]
)
# When image is uploaded in depth estimation, also update wound classification
depth_input_image.change(
fn=lambda img: img,
inputs=[depth_input_image],
outputs=[wound_input_image]
)
# --- Launch the unified interface ---
if __name__ == "__main__":
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
) |