vishalbakshi's picture
add getters
c6811ab
raw
history blame
1.72 kB
from fastai.vision.all import *
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
app = FastAPI()
def get_x(i):
# Convert NumPy array to a single-channel PIL image with inverted colors
return PILImageBW.create(all_noise[i])
def get_y(i):
return all_thresh[i].astype(np.float32)
def get_items(_):
return range(len(all_noise))
# Load the model
learn = load_learner('model.pkl')
@app.get("/")
def read_root():
html_content = "<p>This is a model inference point for the <a href='https://huggingface.co/spaces/vishalbakshi/isitadigit'>isitadigit</a> space</p>"
return HTMLResponse(content=html_content)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
# from fastapi import FastAPI, HTTPException
# from pydantic import BaseModel
# from PIL import Image
# import io
# import base64
# import uvicorn
# # Load the model
# learn = load_learner('model.pkl')
# app = FastAPI()
# class ImageData(BaseModel):
# image: str
# def predict_image(img):
# img = img.convert("L")
# img = img.resize((28, 28))
# img = np.array(img)
# return f"{learn.predict(img)[0][0]:.2f}"
# @app.get("/")
# def read_root():
# return {"message": "Hello World"}
# @app.post("/predict")
# async def predict(data: ImageData):
# try:
# image_data = base64.b64decode(data.image)
# img = Image.open(io.BytesIO(image_data))
# probability = predict_image(img)
# return {"probability": probability}
# except Exception as e:
# raise HTTPException(status_code=400, detail=str(e))
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=7860)