Spaces:
Sleeping
Sleeping
Commit
·
4d88116
1
Parent(s):
84c2ff1
basic app for testing
Browse files
app.py
CHANGED
@@ -1,44 +1,61 @@
|
|
1 |
-
from
|
2 |
-
from fastapi import FastAPI, HTTPException
|
3 |
-
from pydantic import BaseModel
|
4 |
-
from PIL import Image
|
5 |
-
import io
|
6 |
-
import base64
|
7 |
-
|
8 |
-
def get_x(i):
|
9 |
-
# Convert NumPy array to a single-channel PIL image with inverted colors
|
10 |
-
return PILImageBW.create(all_noise[i])
|
11 |
-
|
12 |
-
def get_y(i):
|
13 |
-
return all_thresh[i].astype(np.float32)
|
14 |
-
|
15 |
-
def get_items(_):
|
16 |
-
return range(len(all_noise))
|
17 |
-
|
18 |
-
# Load the model
|
19 |
-
learn = load_learner('model.pkl')
|
20 |
|
21 |
app = FastAPI()
|
22 |
|
23 |
-
class ImageData(BaseModel):
|
24 |
-
image: str
|
25 |
-
|
26 |
-
def predict_image(img):
|
27 |
-
img = img.convert("L")
|
28 |
-
img = img.resize((28, 28))
|
29 |
-
img = np.array(img)
|
30 |
-
return f"{learn.predict(img)[0][0]:.2f}"
|
31 |
-
|
32 |
@app.get("/")
|
33 |
def read_root():
|
34 |
return {"message": "Hello World"}
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
@app.get("/")
|
6 |
def read_root():
|
7 |
return {"message": "Hello World"}
|
8 |
|
9 |
+
if __name__ == "__main__":
|
10 |
+
import uvicorn
|
11 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
12 |
+
|
13 |
+
# from fastai.vision.all import *
|
14 |
+
# from fastapi import FastAPI, HTTPException
|
15 |
+
# from pydantic import BaseModel
|
16 |
+
# from PIL import Image
|
17 |
+
# import io
|
18 |
+
# import base64
|
19 |
+
# import uvicorn
|
20 |
+
|
21 |
+
# def get_x(i):
|
22 |
+
# # Convert NumPy array to a single-channel PIL image with inverted colors
|
23 |
+
# return PILImageBW.create(all_noise[i])
|
24 |
+
|
25 |
+
# def get_y(i):
|
26 |
+
# return all_thresh[i].astype(np.float32)
|
27 |
+
|
28 |
+
# def get_items(_):
|
29 |
+
# return range(len(all_noise))
|
30 |
+
|
31 |
+
# # Load the model
|
32 |
+
# learn = load_learner('model.pkl')
|
33 |
+
|
34 |
+
# app = FastAPI()
|
35 |
+
|
36 |
+
# class ImageData(BaseModel):
|
37 |
+
# image: str
|
38 |
+
|
39 |
+
# def predict_image(img):
|
40 |
+
# img = img.convert("L")
|
41 |
+
# img = img.resize((28, 28))
|
42 |
+
# img = np.array(img)
|
43 |
+
# return f"{learn.predict(img)[0][0]:.2f}"
|
44 |
+
|
45 |
+
# @app.get("/")
|
46 |
+
# def read_root():
|
47 |
+
# return {"message": "Hello World"}
|
48 |
+
|
49 |
+
# @app.post("/predict")
|
50 |
+
# async def predict(data: ImageData):
|
51 |
+
# try:
|
52 |
+
# image_data = base64.b64decode(data.image)
|
53 |
+
# img = Image.open(io.BytesIO(image_data))
|
54 |
+
# probability = predict_image(img)
|
55 |
+
# return {"probability": probability}
|
56 |
+
# except Exception as e:
|
57 |
+
# raise HTTPException(status_code=400, detail=str(e))
|
58 |
+
|
59 |
+
# if __name__ == "__main__":
|
60 |
+
# import uvicorn
|
61 |
+
# uvicorn.run(app, host="0.0.0.0", port=7860)
|