File size: 24,008 Bytes
a080fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import os
import tempfile
import unittest
import warnings

import numpy as np
import pytest
import torch
from accelerate.utils.memory import release_memory
from datasets import Dataset, Features, Image, Value, load_dataset
from parameterized import parameterized
from transformers import (
    AutoModelForCausalLM,
    AutoModelForImageTextToText,
    AutoProcessor,
    AutoTokenizer,
    BitsAndBytesConfig,
)
from transformers.testing_utils import (
    backend_empty_cache,
    require_bitsandbytes,
    require_flash_attn,
    require_liger_kernel,
    require_peft,
    require_torch_accelerator,
    torch_device,
)
from transformers.utils import is_peft_available

from trl import GRPOConfig, GRPOTrainer
from trl.trainer.utils import get_kbit_device_map

from ..testing_utils import require_vllm
from .testing_constants import MODELS_TO_TEST


if is_peft_available():
    from peft import LoraConfig, PeftModel


@pytest.mark.slow
@require_torch_accelerator
class GRPOTrainerSlowTester(unittest.TestCase):
    def setUp(self):
        self.train_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
        self.eval_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="test")
        self.max_length = 128

    def tearDown(self):
        gc.collect()
        backend_empty_cache(torch_device)
        gc.collect()

    @parameterized.expand(MODELS_TO_TEST)
    @require_liger_kernel
    def test_training_with_liger_grpo_loss(self, model_name):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=3,
                num_generations=3,
                use_liger_loss=True,
                max_completion_length=self.max_length,
                report_to="none",
                logging_strategy="no",
            )

            model = AutoModelForCausalLM.from_pretrained(model_name)
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token

            trainer = GRPOTrainer(
                model=model,
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=self.train_dataset,
                eval_dataset=self.eval_dataset,
                processing_class=tokenizer,
            )
            from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss

            assert isinstance(trainer.liger_grpo_loss, LigerFusedLinearGRPOLoss)

            previous_trainable_params = {n: param.clone() for n, param in model.named_parameters()}

            trainer.train()

            for n, param in previous_trainable_params.items():
                new_param = model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

        release_memory(model, trainer)

    @parameterized.expand(MODELS_TO_TEST)
    @require_liger_kernel
    @require_peft
    def test_training_with_liger_grpo_loss_and_peft(self, model_name):
        from peft import LoraConfig, TaskType

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=3,
                num_generations=3,
                use_liger_loss=True,
                max_completion_length=self.max_length,
                report_to="none",
                logging_strategy="no",
            )

            model = AutoModelForCausalLM.from_pretrained(model_name)
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token

            # Configure PEFT with LoRA
            peft_config = LoraConfig(
                task_type=TaskType.CAUSAL_LM,
                inference_mode=False,
                r=8,
                lora_alpha=32,
                lora_dropout=0.1,
                target_modules=["q_proj", "v_proj"],
            )

            trainer = GRPOTrainer(
                model=model,
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=self.train_dataset,
                eval_dataset=self.eval_dataset,
                processing_class=tokenizer,
                peft_config=peft_config,
            )
            from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss

            assert isinstance(trainer.liger_grpo_loss, LigerFusedLinearGRPOLoss)

            # Verify PEFT adapter is properly initialized
            from peft import PeftModel

            self.assertTrue(isinstance(trainer.model, PeftModel), "Model should be wrapped with PEFT")

            # Store adapter weights before training
            previous_trainable_params = {
                n: param.clone() for n, param in trainer.model.named_parameters() if param.requires_grad
            }
            self.assertTrue(len(previous_trainable_params) > 0, "No trainable parameters found in PEFT model")

            trainer.train()

            # Verify adapter weights have changed after training
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

        release_memory(model, trainer)

    @parameterized.expand(MODELS_TO_TEST)
    def test_training_with_transformers_paged(self, model_name):
        """Test that training works with transformers paged implementation (requires GPU)."""
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                use_transformers_paged=True,  # Enable transformers paged implementation
                report_to="none",
                logging_strategy="no",
            )

            model = AutoModelForCausalLM.from_pretrained(model_name)

            trainer = GRPOTrainer(
                model=model,
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=self.train_dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

        release_memory(model, trainer)

    @require_flash_attn
    @require_bitsandbytes
    @require_peft
    @parameterized.expand(
        [
            ("HuggingFaceTB/SmolVLM-Instruct",),  # Only test the smaller model to avoid OOM
        ]
    )
    def test_vlm_training(self, model_name):
        """
        Test VLM training with aggressive memory optimization.

        This test uses multiple memory reduction techniques:
        - 4-bit quantization with double quantization
        - LoRA with very low rank (r=4)
        - Minimal batch size (1) with gradient accumulation
        - Small images (64x64 instead of 224x224)
        - Short sequences (max_completion_length=8)
        - Only 4 training samples
        - Only 1 training step
        - Gradient checkpointing and bfloat16
        """

        # Create processor once outside the data generator
        processor = AutoProcessor.from_pretrained(model_name, use_fast=True, padding_side="left")
        conversation = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {"type": "text", "text": "What is in the image?"},
                ],
            },
        ]
        prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

        def data_gen(num_samples):
            for _ in range(num_samples):
                yield {
                    "prompt": prompt,
                    "image": np.random.uniform(low=0.0, high=255.0, size=(64, 64, 3)).astype(
                        np.uint8
                    ),  # Much smaller images
                }

        dataset = Dataset.from_generator(
            data_gen, gen_kwargs={"num_samples": 4}, features=Features(image=Image(), prompt=Value(dtype="string"))
        )
        # reduce memory requirements as much as possible
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype="bfloat16",
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_storage="bfloat16",
        )
        model = AutoModelForImageTextToText.from_pretrained(
            model_name,
            attn_implementation="flash_attention_2",
            torch_dtype="bfloat16",
            device_map=get_kbit_device_map(),
            quantization_config=quantization_config,
        )

        def reward_func(prompts, completions, **kwargs):
            # simple nonsensical reward
            return [-((len(c) - 25) ** 2) + 100 for c in completions]

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,
                per_device_train_batch_size=1,  # Minimal batch size
                gradient_accumulation_steps=2,  # Maintain effective batch size
                num_generations=2,
                max_completion_length=8,  # Much shorter completions
                max_prompt_length=None,  # Don't limit prompt length for VLM
                bf16=True,  # Use bfloat16 precision
                max_steps=1,  # Only do 1 training step to save time and memory
                report_to="none",
                logging_strategy="no",
            )
            lora_config = LoraConfig(
                task_type="CAUSAL_LM",
                r=4,  # Much lower rank for minimal memory
                lora_alpha=8,  # Reduced alpha proportionally
                lora_dropout=0.1,
                target_modules=["q_proj", "v_proj"],  # Minimal target modules
                # For VLM models, we typically want to freeze the vision encoder
                # and only adapt the language model parameters
                modules_to_save=None,
            )

            try:
                trainer = GRPOTrainer(
                    model=model,
                    processing_class=processor,
                    reward_funcs=[reward_func],
                    args=training_args,
                    train_dataset=dataset,
                    peft_config=lora_config,
                )

                self.assertIsInstance(trainer.model, PeftModel)

                previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

                trainer.train()

                self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

                # Check that LoRA parameters have changed
                # For VLM models, we're more permissive about which parameters can change
                lora_params_changed = False
                for n, param in previous_trainable_params.items():
                    new_param = trainer.model.get_parameter(n)
                    if "lora" in n.lower():  # LoRA parameters should change
                        if not torch.equal(param, new_param):
                            lora_params_changed = True

                # At least some LoRA parameters should have changed during training
                self.assertTrue(lora_params_changed, "No LoRA parameters were updated during training.")

            except torch.OutOfMemoryError as e:
                self.skipTest(f"Skipping VLM training test due to insufficient GPU memory: {e}")
            except Exception as e:
                # Check for other memory-related errors
                if any(keyword in str(e).lower() for keyword in ["memory", "cuda", "out of memory", "insufficient"]):
                    self.skipTest(f"Skipping VLM training test due to hardware constraints: {e}")
                else:
                    raise

        release_memory(model, trainer)

    @require_vllm
    @require_bitsandbytes
    @require_peft
    def test_vlm_processor_vllm_colocate_mode(self):
        """
        Test that VLM processors work with vLLM in colocate mode.

        This test uses multiple memory optimization techniques to ensure it runs on limited hardware:
        - LoRA (Low-Rank Adaptation) with minimal rank (r=4)
        - 4-bit quantization with BitsAndBytesConfig
        - Gradient checkpointing
        - bfloat16 precision
        - Minimal batch sizes and sequence lengths
        - Very low GPU memory utilization (5%)
        """
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            config = GRPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=1,  # Minimal batch size
                gradient_accumulation_steps=2,  # Make effective batch size 2, divisible by num_generations
                num_generations=2,
                max_completion_length=4,  # Very short completions to reduce memory
                max_prompt_length=32,  # Very short prompts to reduce memory
                use_vllm=True,  # Enable vLLM
                vllm_mode="colocate",  # Use colocate mode to avoid server dependency
                vllm_gpu_memory_utilization=0.05,  # Use minimal GPU memory (5%)
                gradient_checkpointing=True,  # Enable gradient checkpointing to save memory
                bf16=True,  # Use bfloat16 to reduce memory
                report_to="none",
                logging_strategy="no",
            )

            # Create a VLM processor
            processor = AutoProcessor.from_pretrained(
                "HuggingFaceTB/SmolVLM-Instruct", use_fast=True, padding_side="left"
            )

            # Verify processor has both required attributes for VLM detection
            self.assertTrue(hasattr(processor, "tokenizer"))
            self.assertTrue(hasattr(processor, "image_processor"))

            def dummy_reward_func(completions, **kwargs):
                return [1.0] * len(completions)

            # Use LoRA configuration for memory efficiency
            lora_config = LoraConfig(
                r=4,  # Very low rank for minimal memory
                lora_alpha=8,
                target_modules=["q_proj", "v_proj"],  # Minimal target modules
                lora_dropout=0.1,
                bias="none",
                task_type="CAUSAL_LM",
            )

            # Use 4-bit quantization for further memory reduction
            quantization_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=torch.bfloat16,
                bnb_4bit_quant_type="nf4",
                bnb_4bit_use_double_quant=True,
            )

            original_env = {}
            required_env_vars = {
                "RANK": "0",
                "LOCAL_RANK": "0",
                "WORLD_SIZE": "1",
                "LOCAL_WORLD_SIZE": "1",
                "MASTER_ADDR": "localhost",
                "MASTER_PORT": "12355",
            }

            for key, value in required_env_vars.items():
                original_env[key] = os.environ.get(key)
                os.environ[key] = value

            try:
                # Test VLM processor with vLLM colocate mode
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter("always")
                    try:
                        # Load model with quantization for memory efficiency
                        model = AutoModelForCausalLM.from_pretrained(
                            "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                            quantization_config=quantization_config,
                            torch_dtype=torch.bfloat16,
                        )

                        trainer = GRPOTrainer(
                            model=model,
                            reward_funcs=dummy_reward_func,
                            args=config,
                            train_dataset=dataset,
                            processing_class=processor,  # VLM processor
                            peft_config=lora_config,  # Use LoRA for memory efficiency
                        )

                        # Should detect VLM processor correctly and allow vLLM
                        self.assertTrue(trainer.use_vllm, "vLLM should be enabled for VLM processors in colocate mode")
                        self.assertEqual(trainer.vllm_mode, "colocate", "Should use colocate mode")

                        # Check if signature columns were set properly
                        if trainer._signature_columns is not None:
                            # Should include 'image' in signature columns for VLM processors
                            self.assertIn(
                                "image",
                                trainer._signature_columns,
                                "Should include 'image' in signature columns for VLM",
                            )

                        # Should not emit any warnings about VLM incompatibility
                        incompatibility_warnings = [
                            str(w_item.message)
                            for w_item in w
                            if "does not support VLMs" in str(w_item.message)
                            or "not compatible" in str(w_item.message).lower()
                        ]
                        self.assertEqual(
                            len(incompatibility_warnings),
                            0,
                            f"Should not emit VLM incompatibility warnings, but got: {incompatibility_warnings}",
                        )

                        # Test passes if we get this far without exceptions

                    except Exception as e:
                        # If vLLM fails to initialize due to hardware constraints or other issues, that's expected
                        if any(
                            keyword in str(e).lower()
                            for keyword in [
                                "outofmemoryerror",
                                "cuda",
                                "memory",
                                "insufficient",
                                "no such device",
                                "free memory",
                                "gpu memory utilization",
                                "decrease gpu memory",
                            ]
                        ):
                            self.skipTest(f"Skipping vLLM colocate test due to hardware constraints: {e}")
                        elif "KeyError" in str(e) and "RANK" in str(e):
                            self.skipTest(f"Skipping vLLM colocate test due to environment setup issues: {e}")
                        elif "ValueError" in str(e) and "memory" in str(e).lower():
                            self.skipTest(f"Skipping vLLM colocate test due to memory constraints: {e}")
                        else:
                            raise
            finally:
                # Restore original environment variables
                for key, original_value in original_env.items():
                    if original_value is None:
                        os.environ.pop(key, None)
                    else:
                        os.environ[key] = original_value

                release_memory(model, trainer)

    @require_vllm
    def test_training_vllm(self):
        """Test that training works with vLLM for generation."""
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
                logging_strategy="no",
                use_vllm=True,
            )

            try:
                trainer = GRPOTrainer(
                    model="Qwen/Qwen2.5-0.5B-Instruct",  # tiny models are too small for vLLM
                    reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                    args=training_args,
                    train_dataset=dataset,
                )

                previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

                trainer.train()

                self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

                # Check that the params have changed
                for n, param in previous_trainable_params.items():
                    new_param = trainer.model.get_parameter(n)
                    self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

            except Exception as e:
                # If vLLM fails to initialize due to hardware constraints or other issues, that's expected
                if any(
                    keyword in str(e).lower()
                    for keyword in [
                        "outofmemoryerror",
                        "cuda",
                        "memory",
                        "insufficient",
                        "no such device",
                        "free memory",
                        "gpu memory utilization",
                        "decrease gpu memory",
                    ]
                ):
                    self.skipTest(f"Skipping vLLM training test due to hardware constraints: {e}")
                elif "KeyError" in str(e) and "RANK" in str(e):
                    self.skipTest(f"Skipping vLLM training test due to environment setup issues: {e}")
                elif "ValueError" in str(e) and "memory" in str(e).lower():
                    self.skipTest(f"Skipping vLLM training test due to memory constraints: {e}")
                else:
                    raise

        release_memory(trainer.model, trainer)