File size: 106,679 Bytes
a080fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import inspect
import os
import re
import textwrap
import warnings
from collections import defaultdict, deque
from collections.abc import Sequence, Sized
from contextlib import nullcontext
from functools import partial
from pathlib import Path
from typing import Any, Callable, Optional, Union

import datasets
import torch
import torch.utils.data
import transformers
from accelerate.utils import broadcast_object_list, gather, gather_object, is_peft_model, set_seed
from datasets import Dataset, IterableDataset
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.utils.data import DataLoader, Sampler
from transformers import (
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoProcessor,
    AutoTokenizer,
    GenerationConfig,
    PreTrainedModel,
    PreTrainedTokenizerBase,
    ProcessorMixin,
    Trainer,
    TrainerCallback,
    is_wandb_available,
)
from transformers.trainer_utils import seed_worker
from transformers.utils import is_datasets_available, is_flash_attn_2_available, is_peft_available, is_rich_available

from ..data_utils import apply_chat_template, is_conversational, maybe_apply_chat_template
from ..extras.profiling import profiling_context, profiling_decorator
from ..extras.vllm_client import VLLMClient
from ..import_utils import is_liger_kernel_available, is_vllm_available
from ..models import prepare_deepspeed, prepare_fsdp, unwrap_model_for_generation
from ..models.utils import _ForwardRedirection
from .callbacks import SyncRefModelCallback
from .grpo_config import GRPOConfig
from .utils import (
    disable_dropout_in_model,
    entropy_from_logits,
    generate_model_card,
    get_comet_experiment_url,
    pad,
    print_prompt_completions_sample,
    selective_log_softmax,
)


if is_peft_available():
    from peft import PeftConfig, get_peft_model

if is_liger_kernel_available():
    from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss

if is_vllm_available():
    from vllm import LLM, SamplingParams
    from vllm.sampling_params import GuidedDecodingParams

if is_wandb_available():
    import wandb

# What we call a reward function is a callable that takes a list of prompts and completions and returns a list of
# rewards. When it's a string, it's a model ID, so it's loaded as a pretrained model.
RewardFunc = Union[str, PreTrainedModel, Callable[[list, list], list[float]]]


class RepeatSampler(Sampler):
    """
    Sampler that repeats the indices of a dataset in a structured manner.

    Args:
        data_source (`Sized`):
            Dataset to sample from.
        mini_repeat_count (`int`):
            Number of times to repeat each index per batch.
        batch_size (`int`, *optional*, defaults to `1`):
            Number of unique indices per batch.
        repeat_count (`int`, *optional*, defaults to `1`):
            Number of times to repeat the full sampling process.
        shuffle (`bool`, *optional*, defaults to `True`):
            Whether to shuffle the dataset.
        seed (`int` or `None`, *optional*, defaults to `None`):
            Random seed for reproducibility (only affects this sampler).

    Example:
    ```python
    >>> sampler = RepeatSampler(
    ...     ["a", "b", "c", "d", "e", "f", "g"], mini_repeat_count=2, batch_size=3, repeat_count=4
    ... )
    >>> list(sampler)
    [4, 4, 3, 3, 0, 0,
     4, 4, 3, 3, 0, 0,
     4, 4, 3, 3, 0, 0,
     4, 4, 3, 3, 0, 0,
     1, 1, 2, 2, 6, 6,
     1, 1, 2, 2, 6, 6,
     1, 1, 2, 2, 6, 6,
     1, 1, 2, 2, 6, 6]
    ```

    ```txt
    mini_repeat_count = 3
          -   -   -
         [0,  0,  0,  1,  1,  1,  2,  2,  2,  3,  3,  3,      |
          4,  4,  4,  5,  5,  5,  6,  6,  6,  7,  7,  7,      |
          8,  8,  8,  9,  9,  9, 10, 10, 10, 11, 11, 11,      |
                                                                repeat_count = 2
          0,  0,  0,  1,  1,  1,  2,  2,  2,  3,  3,  3,      |
          4,  4,  4,  5,  5,  5,  6,  6,  6,  7,  7,  7,      |
          8,  8,  8,  9,  9,  9, 10, 10, 10, 11, 11, 11, ...] |
          ---------   ---------   ---------   ---------
           ---------   ---------   ---------   ---------
            ---------   ---------   ---------   ---------
                         batch_size = 12
    ```
    """

    def __init__(
        self,
        data_source: Sized,
        mini_repeat_count: int,
        batch_size: int = 1,
        repeat_count: int = 1,
        shuffle: bool = True,
        seed: Optional[int] = None,
    ):
        self.data_source = data_source
        self.mini_repeat_count = mini_repeat_count
        self.batch_size = batch_size
        self.repeat_count = repeat_count
        self.num_samples = len(data_source)
        self.shuffle = shuffle
        self.seed = seed

        if shuffle:
            self.generator = torch.Generator()  # Create a local random generator
            if seed is not None:
                self.generator.manual_seed(seed)

    def __iter__(self):
        if self.shuffle:
            # E.g., [2, 4, 3, 1, 0, 6, 5] (num_samples = 7)
            indexes = torch.randperm(self.num_samples, generator=self.generator).tolist()
        else:
            indexes = list(range(self.num_samples))

        #    [2, 4, 3, 1, 0, 6, 5]
        # -> [[2, 4, 3], [1, 0, 6], [5]]  (batch_size = 3)
        indexes = [indexes[i : i + self.batch_size] for i in range(0, len(indexes), self.batch_size)]

        #    [[2, 4, 3], [1, 0, 6], [5]]
        # -> [[2, 4, 3], [1, 0, 6]]
        indexes = [chunk for chunk in indexes if len(chunk) == self.batch_size]

        for chunk in indexes:
            for _ in range(self.repeat_count):
                for index in chunk:
                    for _ in range(self.mini_repeat_count):
                        yield index

    def __len__(self) -> int:
        return (self.num_samples // self.batch_size) * self.batch_size * self.mini_repeat_count * self.repeat_count


# torch.nanstd doesn't exist, so we define it here
def nanstd(tensor: torch.Tensor) -> torch.Tensor:
    """
    Compute the standard deviation of a tensor, ignoring NaNs. This function only supports 1D tensors.

    Args:
        tensor (`torch.Tensor`):
            Input tensor of shape `(N,)`.

    Returns:
        `torch.Tensor`:
            Standard deviation of the tensor, ignoring NaNs.
    """
    variance = torch.nanmean((tensor - torch.nanmean(tensor, keepdim=True)) ** 2)  # Compute variance ignoring NaNs
    count = torch.sum(~torch.isnan(tensor))  # Count of non-NaN values
    variance *= count / (count - 1)  # Bessel's correction
    return torch.sqrt(variance)


def split_tensor_dict(
    tensor_dict: dict[str, Optional[torch.Tensor]], num_chunks: int
) -> list[dict[str, Optional[torch.Tensor]]]:
    """
    Splits a dictionary of tensors along the first dimension into `num_chunks` equal parts.

    Example:
    ```python
    >>> x = torch.arange(12).reshape(6, 2)
    >>> y = torch.arange(6).reshape(6, 1)
    >>> tensor_dict = {"x": x, "y": y}
    >>> split_tensor_dict(tensor_dict, 3)
    [
        {"x": tensor([[0, 1], [2, 3]]), "y": tensor([[0], [1]])},
        {"x": tensor([[4, 5], [6, 7]]), "y": tensor([[2], [3]])},
        {"x": tensor([[ 8,  9], [10, 11]]), "y": tensor([[4], [5]])}
    ]
    ```
    """
    first_tensor = next(tensor for tensor in tensor_dict.values() if tensor is not None)
    chunk_size = first_tensor.shape[0] // num_chunks
    return [
        {
            key: tensor[i * chunk_size : (i + 1) * chunk_size] if tensor is not None else None
            for key, tensor in tensor_dict.items()
        }
        for i in range(num_chunks)
    ]


def shuffle_sequence_dict(seq_dict: dict[str, Optional[Sequence]]) -> dict[str, Optional[Sequence]]:
    """
    Shuffles all sequence-like values in a dictionary along the first dimension in unison.

    Example:
    ```python
    >>> x = torch.arange(6).reshape(3, 2)
    >>> y = ["a", "b", "c"]
    >>> seq_dict = {"x": x, "y": y}
    >>> shuffle_sequence_dict(seq_dict)
    {'x': tensor([[2, 3],
                  [0, 1],
                  [4, 5]]),
     'y': ['b', 'a', 'c']}
    ```
    """
    # Determine batch size from the first non-None sequence
    batch_size = len(next(v for v in seq_dict.values() if v is not None))
    permutation = torch.randperm(batch_size)

    def permute(v: Optional[Sequence]) -> Optional[Sequence]:
        if v is None:
            return None
        if isinstance(v, torch.Tensor):
            return v[permutation]
        return [v[i] for i in permutation]

    return {key: permute(val) for key, val in seq_dict.items()}


def nanmin(tensor: torch.Tensor) -> torch.Tensor:
    """
    Compute the minimum value of a tensor, ignoring NaNs. This function only supports 1D tensors.

    Args:
        tensor (`torch.Tensor`): Input tensor of shape `(N,)`.

    Returns:
        `torch.Tensor`: Minimum value of the tensor, ignoring NaNs. Returns NaN if all values are NaN.
    """
    if torch.isnan(tensor).all():
        return torch.tensor(float("nan"), dtype=tensor.dtype, device=tensor.device)
    return torch.min(tensor[~torch.isnan(tensor)])


def nanmax(tensor: torch.Tensor) -> torch.Tensor:
    """
    Compute the maximum value of a tensor, ignoring NaNs. This function only supports 1D tensors.

    Args:
        tensor (`torch.Tensor`): Input tensor of shape `(N,)`.

    Returns:
        `torch.Tensor`: Maximum value of the tensor, ignoring NaNs. Returns NaN if all values are NaN.
    """
    if torch.isnan(tensor).all():
        return torch.tensor(float("nan"), dtype=tensor.dtype, device=tensor.device)
    return torch.max(tensor[~torch.isnan(tensor)])


def identity(x):
    """Do we really need docs for this?"""
    return x


def split_pixel_values_by_grid(batch: dict[str, torch.Tensor]) -> dict[str, Union[torch.Tensor, list[torch.Tensor]]]:
    """
    Splits `batch["pixel_values"]` into a list of tensors based on the product of each row in
    `batch["image_grid_thw"]`, while keeping other entries unchanged.
    """
    if "image_grid_thw" not in batch or "pixel_values" not in batch:
        return batch

    lengths = batch["image_grid_thw"].prod(dim=1).tolist()  # [batch_size]
    pixel_values = batch["pixel_values"]  # [total, feature_dim]

    if sum(lengths) != pixel_values.size(0):
        raise ValueError(f"Mismatch: sum(lengths) = {sum(lengths)} != pixel_values.size(0) = {pixel_values.size(0)}")

    split_values = list(torch.split(batch["pixel_values"], lengths, dim=0))
    return {**batch, "pixel_values": split_values}


def unsplit_pixel_values_by_grid(batch: dict[str, Union[torch.Tensor, list[torch.Tensor]]]) -> dict[str, torch.Tensor]:
    """
    Opposite of `split_pixel_values_by_grid`. Merges a list of tensors in `batch["pixel_values"]`
    back into a single tensor along the first dimension.
    """
    pixel_values = batch.get("pixel_values")

    if isinstance(pixel_values, list):
        merged = torch.cat(pixel_values, dim=0)
        return {**batch, "pixel_values": merged}
    else:
        return batch


def truncate_with_protected_tokens(
    ids: torch.Tensor, mask: torch.Tensor, target_length: int, protected_tokens: list[int]
) -> tuple[torch.Tensor, torch.Tensor]:
    """
    Truncate tensors to target length while preserving protected tokens.

    Args:
        ids (`torch.Tensor`):
            Input tensor of token IDs, shape (batch_size, sequence_length).
        mask (`torch.Tensor`):
            Input tensor of attention masks, shape (batch_size, sequence_length).
        target_length (`int`):
            Desired length of the output sequences.
        protected_tokens (`list[int]`):
            List of token IDs that should be preserved in the output.
    """
    protected_set = set(protected_tokens)

    def process_sequence(ids, mask):
        # Create boolean masks
        is_protected = torch.tensor([x.item() in protected_set for x in ids])
        is_non_protected = ~is_protected

        # Count tokens
        num_protected = is_protected.sum().item()
        num_non_protected_needed = target_length - num_protected

        if num_non_protected_needed < 0:
            raise ValueError(
                f"target_length ({target_length}) is too small for the protected tokens ({num_protected} tokens). "
                f"Please increase target length to at least {num_protected} or disable truncation."
            )

        # Select which non-protected tokens to keep (rightmost ones)
        non_protected_indices = torch.where(is_non_protected)[0]
        keep_non_protected = torch.zeros_like(is_non_protected)
        if num_non_protected_needed > 0:
            keep_indices = non_protected_indices[-num_non_protected_needed:]
            keep_non_protected[keep_indices] = True

        # Final mask: protected OR selected non-protected
        keep_mask = is_protected | keep_non_protected

        return ids[keep_mask], mask[keep_mask]

    # Process each sequence in the batch
    truncated_seq = []
    truncated_mask = []

    for i in range(ids.shape[0]):
        new_ids, new_mask = process_sequence(ids[i], mask[i])
        truncated_seq.append(new_ids)
        truncated_mask.append(new_mask)

    return torch.stack(truncated_seq), torch.stack(truncated_mask)


class GRPOTrainer(Trainer):
    """
    Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the
    paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language
    Models](https://huggingface.co/papers/2402.03300).

    Example:

    ```python
    from datasets import load_dataset
    from trl import GRPOTrainer

    dataset = load_dataset("trl-lib/tldr", split="train")


    def reward_func(completions, **kwargs):
        # Dummy reward function that rewards completions with more unique letters.
        return [float(len(set(completion))) for completion in completions]


    trainer = GRPOTrainer(
        model="Qwen/Qwen2-0.5B-Instruct",
        reward_funcs=reward_func,
        train_dataset=dataset,
    )

    trainer.train()
    ```

    Args:
        model (`Union[str, PreTrainedModel]`):
            Model to be trained. Can be either:

            - A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a
              path to a *directory* containing model weights saved using
              [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
              using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in
              `args.model_init_kwargs`.
            - A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
        reward_funcs (`Union[RewardFunc, list[RewardFunc]]`):
            Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward
            functions with the prompts and completions and sum the rewards. Can be either:

            - A single reward function, such as:
                - A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a
                path to a *directory* containing model weights saved using
                [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
                using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the
                keyword arguments in `args.model_init_kwargs`.
                - A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported.
                - A custom reward function: The function is provided with the prompts and the generated completions,
                  plus any additional columns in the dataset. It should return a list of rewards. Custom reward
                  functions can also return `None` when the reward is not applicable to those samples. This is useful
                  for multi-task training where different reward functions apply to different types of samples. When a
                  reward function returns `None` for a sample, that reward function is excluded from the reward
                  calculation for that sample. For more details, see [Using a custom reward
                  function](#using-a-custom-reward-function).

                  The trainer's state is also passed to the reward function. The trainer's state is an instance of
                  [`~transformers.TrainerState`] and can be accessed by accessing the `trainer_state` argument to the
                  reward function's signature.
            - A list of reward functions, where each item can independently be any of the above types. Mixing different
            types within the list (e.g., a string model ID and a custom reward function) is allowed.
        args ([`GRPOConfig`], *optional*, defaults to `None`):
            Configuration for this trainer. If `None`, a default configuration is used.
        train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
            Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is
            ignored. The format of the samples can be either:

            - [Standard](dataset_formats#standard): Each sample contains plain text.
            - [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
              and content).
        eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
            Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
        processing_class ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.ProcessorMixin`], *optional*, defaults to `None`):
            Processing class used to process the data. The padding side must be set to "left". If `None`, the
            processing class is loaded from the model's name with [`~transformers.AutoProcessor.from_pretrained`]. A
            padding token, `tokenizer.pad_token`, must be set. If the processing class has not set a padding token,
            `tokenizer.eos_token` will be used as the default.
        reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`):
            Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either:

            - A single processing class: Used when `reward_funcs` contains only one reward function.
            - A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`.
            If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is
            `None`, the tokenizer for the model is automatically loaded using
            [`~transformers.AutoTokenizer.from_pretrained`]. For elements in `reward_funcs` that are custom reward
            functions (not [`~transformers.PreTrainedModel`]), the corresponding entries in `reward_processing_classes`
            are ignored.
        callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`):
            List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed
            in [here](https://huggingface.co/docs/transformers/main_classes/callback).

            If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
            method.
        optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`):
            A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your
            model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
        peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`):
            PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
    """

    _tag_names = ["trl", "grpo"]

    def __init__(
        self,
        model: Union[str, PreTrainedModel],
        reward_funcs: Union[RewardFunc, list[RewardFunc]],
        args: Optional[GRPOConfig] = None,
        train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
        eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None,
        processing_class: Optional[Union[PreTrainedTokenizerBase, ProcessorMixin]] = None,
        reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None,
        callbacks: Optional[list[TrainerCallback]] = None,
        optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
        peft_config: Optional["PeftConfig"] = None,
    ):
        # Args
        if args is None:
            model_name = model if isinstance(model, str) else model.config._name_or_path
            model_name = model_name.split("/")[-1]
            args = GRPOConfig(f"{model_name}-GRPO")

        # Models
        # Trained model
        model_init_kwargs = args.model_init_kwargs or {}
        if isinstance(model, str):
            model_id = model
            torch_dtype = model_init_kwargs.get("torch_dtype")
            if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None:
                pass  # torch_dtype is already a torch.dtype or "auto" or None
            elif isinstance(torch_dtype, str):  # it's a str, but not "auto"
                torch_dtype = getattr(torch, torch_dtype)
                model_init_kwargs["torch_dtype"] = torch_dtype
            else:
                raise ValueError(
                    "Invalid `torch_dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing "
                    f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}."
                )
            # Disable caching if gradient checkpointing is enabled (not supported)
            config = AutoConfig.from_pretrained(model_id)
            architecture = getattr(transformers, config.architectures[0])
            model = architecture.from_pretrained(model_id, **model_init_kwargs)
        else:
            model_id = model.config._name_or_path
            if args.model_init_kwargs is not None:
                raise ValueError(
                    "You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. "
                    "This argument can only be used when the `model` argument is a string."
                )

        # Some models (SmolVLM/Idefics3) don't support `logits_to_keep` argument and error out if we pass it
        # Inspect the forward method before we wrap the model with PEFT
        self.model_kwarg_keys = (
            inspect.signature(model.forward).parameters.keys()
            if not hasattr(model, "get_base_model")
            else inspect.signature(model.get_base_model().forward).parameters.keys()
        )

        if peft_config is not None:
            if not is_peft_available():
                raise ImportError("PEFT is required to use `peft_config`. Run `pip install peft`.")
            model = get_peft_model(model, peft_config)

        # Enable gradient checkpointing if requested
        if args.gradient_checkpointing:
            model = self._enable_gradient_checkpointing(model, args)

        # Processing class
        if processing_class is None:
            processing_class = AutoProcessor.from_pretrained(model.config._name_or_path)

        # Handle pad token for processors or tokenizers
        if isinstance(processing_class, ProcessorMixin):
            tokenizer = processing_class.tokenizer
        elif isinstance(processing_class, PreTrainedTokenizerBase):
            tokenizer = processing_class
        else:
            raise TypeError("The `processing_class` must be either a `PreTrainedTokenizerBase` or a `ProcessorMixin`")

        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token

        self.pad_token = tokenizer.pad_token
        self.pad_token_id = tokenizer.pad_token_id
        self.eos_token_id = tokenizer.eos_token_id
        self.image_token = getattr(processing_class, "image_token", None)
        self.image_token_id = getattr(processing_class, "image_token_id", None)
        self.vision_start_token_id = getattr(model.config, "vision_start_token_id", None)
        self.vision_end_token_id = getattr(model.config, "vision_end_token_id", None)

        # Reward functions
        if not isinstance(reward_funcs, list):
            reward_funcs = [reward_funcs]
        self.reward_func_names = []
        for i, reward_func in enumerate(reward_funcs):
            if isinstance(reward_func, str):
                reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained(
                    reward_func, num_labels=1, **model_init_kwargs
                )
            if isinstance(reward_funcs[i], nn.Module):  # Use Module over PretrainedModel for compat w/ compiled models
                self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1])
            else:
                self.reward_func_names.append(reward_funcs[i].__name__)
        self.reward_funcs = reward_funcs

        # Reward weights
        if args.reward_weights is not None:
            if len(args.reward_weights) != len(reward_funcs):
                raise ValueError(
                    f"Number of reward weights ({len(args.reward_weights)}) must match number of reward "
                    f"functions ({len(reward_funcs)})"
                )
            self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32)
        else:
            self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32)

        # Reward processing class
        if reward_processing_classes is None:
            reward_processing_classes = [None] * len(reward_funcs)
        elif not isinstance(reward_processing_classes, list):
            reward_processing_classes = [reward_processing_classes]
        else:
            if len(reward_processing_classes) != len(reward_funcs):
                raise ValueError("The number of reward processing classes must match the number of reward functions.")

        for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)):
            if isinstance(reward_func, PreTrainedModel):
                if reward_processing_class is None:
                    reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path)
                if reward_processing_class.pad_token_id is None:
                    reward_processing_class.pad_token = reward_processing_class.eos_token
                # The reward model computes the reward for the latest non-padded token in the input sequence.
                # So it's important to set the pad token ID to the padding token ID of the processing class.
                reward_func.config.pad_token_id = reward_processing_class.pad_token_id
                reward_processing_classes[i] = reward_processing_class
        self.reward_processing_classes = reward_processing_classes

        # Training arguments
        self.max_prompt_length = args.max_prompt_length
        self.max_completion_length = args.max_completion_length  # = |o_i| in the GRPO paper
        self.num_generations = args.num_generations  # = G in the GRPO paper
        self.temperature = args.temperature
        self.top_p = args.top_p
        self.top_k = args.top_k
        self.min_p = args.min_p
        self.repetition_penalty = args.repetition_penalty
        self.use_transformers_paged = args.use_transformers_paged
        self.use_vllm = args.use_vllm
        self.vllm_mode = args.vllm_mode
        self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization  # only applies to colocation mode
        self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size  # only applies to colocation mode
        self.use_liger_loss = args.use_liger_loss
        self.loss_type = args.loss_type
        self.scale_rewards = args.scale_rewards
        self.importance_sampling_level = args.importance_sampling_level
        self.mask_truncated_completions = args.mask_truncated_completions
        self.top_entropy_quantile = args.top_entropy_quantile
        if self.use_liger_loss and self.top_entropy_quantile < 1.0:
            raise NotImplementedError(
                "Liger Kernels don't currently support masking token positions based on entropy."
            )
        if self.use_liger_loss and not self.importance_sampling_level == "token":
            raise NotImplementedError(
                "Liger Kernels currently only support token-level importance sampling. Please set"
                "`importance_sampling_level` to 'token'."
            )

        # Datasets
        self.shuffle_dataset = args.shuffle_dataset

        if (
            isinstance(train_dataset, IterableDataset)
            or isinstance(eval_dataset, IterableDataset)
            or (
                isinstance(eval_dataset, dict) and any(isinstance(ds, IterableDataset) for ds in eval_dataset.values())
            )
        ):
            # See https://github.com/huggingface/trl/issues/3213
            raise NotImplementedError(
                "Iterable datasets are not yet supported in GRPOTrainer. Please use a standard dataset instead."
            )

        # Multi-step
        self.num_iterations = args.num_iterations  # = 𝜇 in the GRPO paper
        self.epsilon_low = args.epsilon
        self.epsilon_high = args.epsilon_high if args.epsilon_high is not None else args.epsilon
        # Tracks the number of iterations (forward + backward passes), including those within a grad accum cycle
        self._step = 0
        # Buffer the batch to reuse generated outputs across multiple updates. For more details, see
        # `_get_train_sampler` and `_prepare_inputs`.
        self._buffered_inputs = None

        # The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
        # input tensor associated with the key "input_ids". However, in GRPO, the sampled data does not include the
        # "input_ids" key. Instead, the available keys is "prompt". As a result, the trainer issues the warning:
        # "Could not estimate the number of tokens of the input, floating-point operations will not be computed." To
        # suppress this warning, we set the "estimate_tokens" key in the model's "warnings_issued" dictionary to True.
        # This acts as a flag to indicate that the warning has already been issued.
        model.warnings_issued["estimate_tokens"] = True

        super().__init__(
            model=model,
            args=args,
            data_collator=identity,  # No data collation is needed in GRPO
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            callbacks=callbacks,
            optimizers=optimizers,
        )

        # Reference model
        self.beta = args.beta
        if self.beta == 0.0:
            # If beta is 0.0, the reference model is not needed
            self.ref_model = None
        elif is_peft_model(model):
            # If PEFT is used, the reference model is not needed since the adapter can be disabled
            # to revert to the initial model.
            self.ref_model = None
        else:
            # For deepspeed, fsdp or non-distributed models, create a reference model from scratch
            config = AutoConfig.from_pretrained(model_id)
            architecture = getattr(transformers, config.architectures[0])
            self.ref_model = architecture.from_pretrained(model_id, **model_init_kwargs)

        # Disable dropout in the models
        if args.disable_dropout:
            disable_dropout_in_model(model)
            if self.ref_model is not None:
                disable_dropout_in_model(self.ref_model)

        # Liger loss
        if self.use_liger_loss:
            if not is_liger_kernel_available():
                raise ImportError(
                    "Liger is required to use `liger_loss` as the GRPO loss. Run `pip install liger-kernel`."
                )
            # redirect the model.module forward to the model forward to ensure pre-forward hooks are called
            self._forward_redirection = _ForwardRedirection()

            self.liger_grpo_loss = LigerFusedLinearGRPOLoss(
                beta=self.beta,
                epsilon_low=self.epsilon_low,
                epsilon_high=self.epsilon_high,
                temperature=self.temperature,
                use_ref_model=self.beta != 0.0,
                loss_type=self.loss_type,
                max_completion_length=self.max_completion_length,
            )

        # Initialize the metrics
        self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)}
        self._total_train_tokens = 0
        self.log_completions = args.log_completions
        self.wandb_log_unique_prompts = args.wandb_log_unique_prompts
        self.num_completions_to_print = args.num_completions_to_print
        # Keep logs sized to the generation batch to record only outputs from the latest model update.
        self._logs = {
            "image": deque(maxlen=args.generation_batch_size),
            "prompt": deque(maxlen=args.generation_batch_size),
            "completion": deque(maxlen=args.generation_batch_size),
            "rewards": defaultdict(lambda: deque(maxlen=args.generation_batch_size)),
            "advantages": deque(maxlen=args.generation_batch_size),
        }

        # Ensure each process receives a unique seed to prevent duplicate completions when generating with
        # transformers if num_generations exceeds per_device_train_batch_size. We could skip it if we use vLLM, but
        # it's safer to set it in all cases.
        set_seed(args.seed, device_specific=True)

        if self.use_vllm:
            if not is_vllm_available():
                raise ImportError(
                    "vLLM is not available and `use_vllm` is set to True. Please install vLLM with "
                    "`pip install vllm` to use it."
                )

            if self.vllm_mode == "server" and self.accelerator.is_main_process:
                if args.vllm_server_base_url is not None:
                    base_url = args.vllm_server_base_url
                else:
                    base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}"
                self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout)
                self.vllm_client.init_communicator(device=torch.cuda.current_device())

            elif self.vllm_mode == "colocate":
                # Make sure vllm_tensor_parallel_size group size evenly divides the world size - each group should have
                # the same number of ranks
                if not self.accelerator.num_processes % self.vllm_tensor_parallel_size == 0:
                    raise ValueError(
                        f"vllm_tensor_parallel_size ({self.vllm_tensor_parallel_size}) must divide world size "
                        f"({self.accelerator.num_processes}) evenly."
                    )

                if self.vllm_tensor_parallel_size > 1:
                    # Create subgroups of ranks for TP, each group with `vllm_tensor_parallel_size` ranks.
                    # For example, if world_size=8 and vllm_tensor_parallel_size=2 → groups: [0,1], [2,3], [4,5], [6,7]
                    self.tp_group, _ = torch.distributed.new_subgroups_by_enumeration(
                        [
                            list(range(i * self.vllm_tensor_parallel_size, (i + 1) * self.vllm_tensor_parallel_size))
                            for i in range(self.accelerator.num_processes // self.vllm_tensor_parallel_size)
                        ]
                    )

                # vLLM requires the environment variables to be set for distributed training.
                os.environ["RANK"] = str(self.accelerator.process_index)
                os.environ["LOCAL_RANK"] = str(self.accelerator.local_process_index)
                os.environ["WORLD_SIZE"] = str(self.accelerator.num_processes)
                os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "localhost")
                os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "12345")

                if self.max_prompt_length is not None and self.max_completion_length is not None:
                    max_model_len = self.max_prompt_length + self.max_completion_length
                else:
                    max_model_len = None
                self.llm = LLM(
                    model=model.name_or_path,
                    tensor_parallel_size=args.vllm_tensor_parallel_size,
                    gpu_memory_utilization=self.vllm_gpu_memory_utilization,
                    max_num_seqs=self.args.per_device_train_batch_size
                    * self.vllm_tensor_parallel_size
                    * self.args.steps_per_generation,
                    max_model_len=max_model_len,
                    distributed_executor_backend="external_launcher",
                    # Feed identical seed for tp groups to ensure sampling results are the same across workers
                    seed=self.accelerator.process_index // self.vllm_tensor_parallel_size,
                    # Latest vLLM v1 memory profiler is misled by the high default value (i.e., 32768) - thinking there's not enough memory
                    max_num_batched_tokens=4096,
                    model_impl=self.args.vllm_model_impl,
                )

            # vLLM specific sampling arguments
            self.guided_decoding_regex = args.vllm_guided_decoding_regex

            self._last_loaded_step = -1  # tag to avoid useless loading during grad accumulation

            # When using vLLM, the main process is responsible for loading the model weights. This can cause process
            # desynchronization and seems to lead to DeepSpeed hanging during initialization. To prevent this, we
            # synchronize all processes after vLLM has been fully initialized.
            self.accelerator.wait_for_everyone()
        else:
            generation_kwargs = {
                "max_new_tokens": self.max_completion_length,
                "do_sample": True,
                "pad_token_id": tokenizer.pad_token_id,
                "bos_token_id": tokenizer.bos_token_id,
                "eos_token_id": tokenizer.eos_token_id,
                "temperature": self.temperature,
                "top_p": self.top_p,
                "top_k": self.top_k,
                "min_p": self.min_p,
                "repetition_penalty": self.repetition_penalty,
                "cache_implementation": args.cache_implementation,
            }
            if args.use_transformers_paged:
                generation_kwargs["max_batch_tokens"] = 512
                generation_kwargs["num_blocks"] = 1024
                generation_kwargs["block_size"] = 128
            if args.generation_kwargs is not None:
                generation_kwargs.update(args.generation_kwargs)
            self.generation_config = GenerationConfig(**generation_kwargs)

        # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
        # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
        # self.model_accepts_loss_kwargs to False to enable scaling.
        self.model_accepts_loss_kwargs = False

        # Add tags to the model
        self.model.add_model_tags(self._tag_names)

        if self.ref_model is not None:
            if self.is_deepspeed_enabled:
                self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator)
            elif self.is_fsdp_enabled:
                self.ref_model = prepare_fsdp(self.ref_model, self.accelerator)
            else:
                self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)

        if args.sync_ref_model:
            self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator))

        for i, reward_func in enumerate(self.reward_funcs):
            if isinstance(reward_func, PreTrainedModel):
                if self.is_deepspeed_enabled:
                    self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator)
                else:
                    # set device placement to True to make `prepare_model` move `reward_func` to device when using fsdp
                    self.reward_funcs[i] = self.accelerator.prepare_model(
                        reward_func, evaluation_mode=True, device_placement=True
                    )

    def _set_signature_columns_if_needed(self):
        # If `self.args.remove_unused_columns` is True, non-signature columns are removed.
        # By default, this method sets `self._signature_columns` to the model's expected inputs.
        # In GRPOTrainer, we preprocess data, so using the model's signature columns doesn't work.
        # Instead, we set them to the columns expected by the `training_step` method, hence the override.
        if self._signature_columns is None:
            self._signature_columns = ["prompt", "image"]

    # This method overrides `Trainer.get_train_dataloader` to support our custom batching strategy.
    # Instead of returning a standard per-step batch (i.e., `per_device_batch_size), our dataloader loads an
    # *generation* batch (i.e., `per_device_batch_size × steps_per_generation`). This allows us to generate completions
    # once every steps_per_generation step—rather than once per accumulation step—which is significantly more
    # efficient. The only change from the original implementation is multiplying the batch size by
    # `steps_per_generation`. Thus, `_prepare_inputs` is called with this *generation* batch, and it handles the
    # splitting internally.
    # Maintenance note: This method is a copy-paste of the original `Trainer.get_train_dataloader` with only one line
    # modification. As a result, some parts of the method aren't relevant to GRPO, but we keep them to stay one line
    # apart from the super method, ensuring easier maintenance in the future.
    def get_train_dataloader(self):
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")

        train_dataset = self.train_dataset
        data_collator = self.data_collator
        if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
            train_dataset = self._remove_unused_columns(train_dataset, description="training")
        else:
            data_collator = self._get_collator_with_removed_columns(data_collator, description="training")

        dataloader_params = {
            "batch_size": self._train_batch_size * self.args.steps_per_generation,  # < this is the change
            "collate_fn": data_collator,
            "num_workers": self.args.dataloader_num_workers,
            "pin_memory": self.args.dataloader_pin_memory,
            "persistent_workers": self.args.dataloader_persistent_workers,
        }

        if not isinstance(train_dataset, torch.utils.data.IterableDataset):
            dataloader_params["sampler"] = self._get_train_sampler()
            dataloader_params["drop_last"] = self.args.dataloader_drop_last
            dataloader_params["worker_init_fn"] = partial(
                seed_worker, num_workers=self.args.dataloader_num_workers, rank=self.args.process_index
            )

            dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor

        return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))

    def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Sampler:
        # Returns a sampler that
        # 1. ensures each prompt is repeated across multiple processes. This guarantees that identical prompts are
        #    distributed to different GPUs, allowing rewards to be computed and normalized correctly within each prompt
        #    group. Using the same seed across processes ensures consistent prompt assignment, preventing discrepancies
        #    in group formation.
        # 2. repeats the batch multiple times to allow reusing generations across multiple updates. Refer to
        #    _prepare_inputs to see how the generations are stored and reused.

        # In the following figure, the values are the prompt indices. The first row shows the first sampled batch, the
        # second row shows the second sampled batch, and so on.
        #
        #                                      |   GPU 0  |   GPU 1  |
        #
        #                 global_step   step    <-───>  num_generations=2
        #                                       <-───────> per_device_train_batch_size=3
        #  grad_accum    ▲  ▲  0          0     0   0   1   1   2   2   <- Generate for the first `steps_per_generation` (prompts 0 to 11); store the completions; use the first slice to compute the loss
        #     =2         ▼  |  0          1     3   3   4   4   5   5   <- Take the stored generations and use the second slice to compute the loss
        #                   |
        #                   |  1          2     6   6   7   7   8   8   <- Take the stored generations and use the third slice to compute the loss
        #  steps_per_gen=4  ▼  1          3     9   9  10  10  11  11   <- Take the stored generations and use the fourth slice to compute the loss
        #
        #                      2          4    12  12  13  13  14  14   <- Generate for the second `steps_per_generation` (prompts 12 to 23); store the completions; use the first slice to compute the loss
        #                      2          5    15  15  16  16  17  17   <- Take the stored generations and use the second slice to compute the loss
        #                                          ...
        if dataset is None:
            dataset = self.train_dataset
        return RepeatSampler(
            data_source=dataset,
            mini_repeat_count=self.num_generations,
            batch_size=self.args.generation_batch_size // self.num_generations,
            repeat_count=self.num_iterations * self.args.steps_per_generation,
            shuffle=self.shuffle_dataset,
            seed=self.args.seed,
        )

    def _get_eval_sampler(self, eval_dataset) -> Sampler:
        # See _get_train_sampler for an explanation of the sampler.
        return RepeatSampler(
            data_source=eval_dataset,
            mini_repeat_count=self.num_generations,
            seed=self.args.seed,
        )

    def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: GRPOConfig) -> PreTrainedModel:
        """Enables gradient checkpointing for the model."""
        # Ensure use_cache is disabled
        model.config.use_cache = False

        # Enable gradient checkpointing on the base model for PEFT
        if is_peft_model(model):
            model.base_model.gradient_checkpointing_enable()
        # Enable gradient checkpointing for non-PEFT models
        else:
            model.gradient_checkpointing_enable()

        gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {}
        use_reentrant = (
            "use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"]
        )

        if use_reentrant:
            model.enable_input_require_grads()

        return model

    @profiling_decorator
    def _get_last_hidden_state(
        self,
        unwrapped_model,
        input_ids,
        attention_mask,
        logits_to_keep,
        pixel_values=None,
        image_grid_thw=None,
        pixel_attention_mask=None,
        image_sizes=None,
    ):
        if is_peft_model(unwrapped_model):
            unwrapped_model = unwrapped_model.base_model.model

        # Build model inputs - check if the model supports logits_to_keep (some models and VLMs don't)
        model_inputs = {"input_ids": input_ids, "attention_mask": attention_mask}

        # For Qwen models:
        if image_grid_thw is not None and pixel_values is not None:
            model_inputs["image_grid_thw"] = image_grid_thw
        # For Gemma, SmolVLM2, LLaVa-Next etc.:
        if pixel_values is not None:
            model_inputs["pixel_values"] = pixel_values
        # For SmolVLM2
        if pixel_attention_mask is not None:
            model_inputs["pixel_attention_mask"] = pixel_attention_mask
        # For LLaVa-Next
        if image_sizes is not None:
            model_inputs["image_sizes"] = image_sizes

        # Only add logits_to_keep if the model supports it
        if "logits_to_keep" in self.model_kwarg_keys:
            # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
            model_inputs["logits_to_keep"] = logits_to_keep + 1

        last_hidden_state = unwrapped_model.model(**model_inputs).last_hidden_state
        # Exclude the last value: it corresponds to the next token pred
        last_hidden_state = last_hidden_state[:, :-1, :]  # (B, L-1, H)
        # Only keep the last logits_to_keep. For model that support logits_to_keep, this is a no-op.
        last_hidden_state = last_hidden_state[:, -logits_to_keep:, :]  # (B, logits_to_keep, H)
        return last_hidden_state

    def get_high_entropy_mask(
        self, entropies: torch.Tensor, mask: torch.Tensor, threshold: float, accelerator=None
    ) -> torch.Tensor:
        """
        Returns a binary mask identifying tokens whose entropy exceeds a given quantile threshold.

        Args:
            entropies (`torch.Tensor`):
                Tensor of shape (batch_size, seq_len) with per-token entropy values.
            mask (`torch.Tensor`):
                Binary mask of the same shape as `entropies`, where `1` indicates valid tokens and `0` padding.
            threshold (`float`):
                Quantile threshold between `0.0` and `1.0` to select high-entropy tokens.

        Returns:
            `torch.Tensor`:
                Boolean mask of shape (batch_size, seq_len), where `True` indicates tokens with entropy >= threshold and
                `False` otherwise.
        """
        non_pad_entropies = entropies[mask.bool()].float()
        if non_pad_entropies.numel() == 0:
            return torch.zeros_like(entropies, dtype=torch.bool)
        all_non_pad_entropies = self.accelerator.gather(non_pad_entropies)
        # Filter out any empty tensors that might result from processes with no valid tokens
        entropy_threshold = torch.quantile(all_non_pad_entropies, threshold)
        masked_entropies = entropies * mask.float()
        entropy_mask = masked_entropies >= entropy_threshold
        return entropy_mask & mask.bool()  # ensure padding tokens are always masked out

    @profiling_decorator
    def _get_per_token_logps_and_entropies(
        self,
        model,
        input_ids,
        attention_mask,
        logits_to_keep,
        batch_size=None,
        compute_entropy=False,
        pixel_values=None,
        image_grid_thw=None,
        pixel_attention_mask=None,
        image_sizes=None,
    ) -> dict[str, Optional[torch.Tensor]]:
        """Compute log-probs and (optionally) entropies for each token."""
        batch_size = batch_size or input_ids.size(0)  # Chunk inputs into smaller batches to reduce memory peak
        all_logps = []
        all_entropies = []
        for start in range(0, input_ids.size(0), batch_size):
            input_ids_batch = input_ids[start : start + batch_size]
            attention_mask_batch = attention_mask[start : start + batch_size]

            # Build model inputs - check if the model supports logits_to_keep (some models and VLMs don't)
            model_inputs = {"input_ids": input_ids_batch, "attention_mask": attention_mask_batch}

            if image_grid_thw is not None and pixel_values is not None:
                model_inputs["image_grid_thw"] = image_grid_thw[start : start + batch_size]
                start_pixel_idx = image_grid_thw[:start].prod(-1).sum().item()
                end_pixel_idx = image_grid_thw[: start + batch_size].prod(-1).sum().item()
                model_inputs["pixel_values"] = pixel_values[start_pixel_idx:end_pixel_idx]
            elif pixel_values is not None:
                model_inputs["pixel_values"] = pixel_values[start : start + batch_size]
            if pixel_attention_mask is not None:
                model_inputs["pixel_attention_mask"] = pixel_attention_mask[start : start + batch_size]
            if image_sizes is not None:
                model_inputs["image_sizes"] = image_sizes[start : start + batch_size]

            # Only add logits_to_keep if the model supports it
            if "logits_to_keep" in self.model_kwarg_keys:
                # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
                model_inputs["logits_to_keep"] = logits_to_keep + 1

            logits = model(**model_inputs).logits
            # Exclude the last value: it corresponds to the next token pred
            logits = logits[:, :-1, :]  # (B, L-1, H)
            # Only keep the last logits_to_keep. For model that support logits_to_keep, this is a no-op.
            logits = logits[:, -logits_to_keep:, :]  # (B, logits_to_keep, H)
            # Divide logits by sampling temperature.
            # See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
            logits = logits / self.temperature

            completion_ids = input_ids_batch[:, -logits_to_keep:]
            logps = selective_log_softmax(logits, completion_ids)  # compute logprobs
            all_logps.append(logps)

            if compute_entropy:
                with torch.no_grad():
                    entropies = entropy_from_logits(logits)
                all_entropies.append(entropies)

        logps = torch.cat(all_logps, dim=0)
        entropies = torch.cat(all_entropies, dim=0) if compute_entropy else None
        return logps, entropies

    def _fix_param_name_to_vllm(self, name, extra_prefixes: Optional[list[str]] = None):
        extra_prefixes = extra_prefixes or []
        prefixes = ["_checkpoint_wrapped_module."] + extra_prefixes
        for prefix in prefixes:
            name = name.replace(prefix, "")
        return name

    def _sync_fsdp1_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None):
        """Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM."""
        # For FSDP1, we need to recurse into children and also use summon_full_params
        if visited is None:
            visited = set()
        for child_name, child_module in module.named_children():
            child_prefix = f"{prefix}.{child_name}" if prefix else child_name
            self._sync_fsdp1_params_to_vllm(
                child_module, prefix=child_prefix, visited=visited
            )  # recurse into the child

        if isinstance(module, FSDP):
            with FSDP.summon_full_params(module, recurse=False, writeback=False):
                for param_name, param in module.named_parameters():
                    full_name = f"{prefix}.{param_name}" if prefix else param_name
                    full_name = self._fix_param_name_to_vllm(full_name, extra_prefixes=["_fsdp_wrapped_module."])

                    if full_name in visited:
                        continue  # skip FSDP subtrees already traversed
                    visited.add(full_name)

                    if self.vllm_mode == "server" and self.accelerator.is_main_process:
                        self.vllm_client.update_named_param(full_name, param.data)
                    elif self.vllm_mode == "colocate":
                        llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
                        llm_model.load_weights([(full_name, param.data)])

    def _sync_fsdp2_params_to_vllm(self, module: nn.Module):
        # For FSDP2, module.state_dict() already covers all parameters, so no need for recursion
        for name, param in module.state_dict().items():
            if param.is_cpu:
                param = param.to(torch.device("cuda"))
            param = param.full_tensor()

            if self.vllm_mode == "server" and self.accelerator.is_main_process:
                self.vllm_client.update_named_param(name, param)
            elif self.vllm_mode == "colocate":
                llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
                llm_model.load_weights([(name, param)])

    @profiling_decorator
    def _move_model_to_vllm(self):
        # For DeepSpeed ZeRO-3 and FSDP, we need to gather all parameters before operations
        deepspeed_plugin = self.accelerator.state.deepspeed_plugin
        zero_stage_3 = deepspeed_plugin is not None and deepspeed_plugin.zero_stage == 3
        if zero_stage_3:
            import deepspeed

            gather_if_zero3 = deepspeed.zero.GatheredParameters
        else:
            gather_if_zero3 = nullcontext

        if is_peft_model(self.model):
            # With PEFT and FSDP/DeepSpeed ZeRO Stage 3, we must gather the full model at once before merging, as
            # merging adapters in a sharded manner is not supported.
            # TODO: does this work with FSDP?
            with gather_if_zero3(list(self.model.parameters())):
                self.model.merge_adapter()

                # Update vLLM weights while parameters are gathered
                if self.is_fsdp_enabled:  # note if using FSDP, gather_if_zero3 is nullcontext
                    # Update vLLM weights while parameters are gathered
                    # For PEFT with FSDP we need to use the memory efficient post-order traversal
                    fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None)
                    fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1
                    if fsdp_version == 1:
                        self._sync_fsdp1_params_to_vllm(
                            self.model
                        )  # use memory-efficient post-order traversal for FSDP
                    elif fsdp_version == 2:
                        self._sync_fsdp2_params_to_vllm(self.model)
                else:
                    # DeepSpeed ZeRO-3 with PEFT
                    for name, param in self.model.named_parameters():
                        # When using PEFT, we need to recover the original parameter name and discard some parameters
                        name = name.removeprefix("base_model.model.").replace(".base_layer", "")
                        if self.model.prefix in name:
                            continue
                        # When module to save, remove its prefix and discard the original module
                        if "original_module" in name:
                            continue
                        name = self._fix_param_name_to_vllm(name, extra_prefixes=["modules_to_save.default."])

                        if self.vllm_mode == "server" and self.accelerator.is_main_process:
                            self.vllm_client.update_named_param(name, param.data)
                        elif self.vllm_mode == "colocate":
                            llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
                            llm_model.load_weights([(name, param.data)])
                # Unmerge adapters while parameters are still gathered
                self.model.unmerge_adapter()
                # Parameters will automatically be repartitioned when exiting the context
        else:
            # For non-PEFT models, simply gather (if needed) and update each parameter individually.
            if self.is_fsdp_enabled:
                fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None)
                fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1
                if fsdp_version == 1:
                    self._sync_fsdp1_params_to_vllm(self.model)  # use memory-efficient post-order traversal for FSDP
                elif fsdp_version == 2:
                    self._sync_fsdp2_params_to_vllm(self.model)
            else:
                for name, param in self.model.named_parameters():
                    name = self._fix_param_name_to_vllm(name)
                    with gather_if_zero3([param]):
                        if self.vllm_mode == "server" and self.accelerator.is_main_process:
                            self.vllm_client.update_named_param(name, param.data)
                        elif self.vllm_mode == "colocate":
                            llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
                            llm_model.load_weights([(name, param.data)])

        # Reset cache on vLLM
        if self.vllm_mode == "server" and self.accelerator.is_main_process:
            self.vllm_client.reset_prefix_cache()
        elif self.vllm_mode == "colocate":
            self.llm.reset_prefix_cache()

    @profiling_decorator
    def _prepare_inputs(
        self, generation_batch: dict[str, Union[torch.Tensor, Any]]
    ) -> dict[str, Union[torch.Tensor, Any]]:
        # Prepares inputs for model training/evaluation by managing completion generation and batch handling.
        # During training:
        #   - Receives the local generation batch (Per-GPU batch size × steps per generation)
        #     from the modified training dataloader instead of the standard local batch
        #   - Generates completions once for the entire generation batch and splits it into batches of size
        #     `per_device_train_batch_size`
        #   - Buffers these completions and returns the appropriate slice for the current accumulation step
        #   - Optimizes by regenerating completions only periodically (every steps_per_generation * num_iterations)
        # During evaluation:
        #   - The input is treated as a standard local batch (no accumulation, no multiple iterations)
        #   - Completions are generated for each batch without buffering or reuse
        # Returns a single local batch in both cases.

        mode = "train" if self.model.training else "eval"
        if mode == "train":
            generate_every = self.args.steps_per_generation * self.num_iterations
            if self._step % generate_every == 0 or self._buffered_inputs is None:
                # self._buffered_inputs=None can occur when resuming from a checkpoint
                generation_batch = self._generate_and_score_completions(generation_batch)
                generation_batch = split_pixel_values_by_grid(generation_batch)
                generation_batch = shuffle_sequence_dict(generation_batch)
                generation_batches = split_tensor_dict(generation_batch, self.args.steps_per_generation)
                self._buffered_inputs = [unsplit_pixel_values_by_grid(batch) for batch in generation_batches]
            inputs = self._buffered_inputs[self._step % self.args.steps_per_generation]
            self._step += 1
        else:
            # In evaluation, there is neither batch grouping for generation, nor multiple iterations, hence
            # local generation batch == local eval batch
            inputs = self._generate_and_score_completions(generation_batch)
        return inputs

    @profiling_decorator
    def _calculate_rewards(self, inputs, prompts, completions, completion_ids_list):
        device = self.accelerator.device
        rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device)

        # Repeat all input columns (but "prompt", "completion", and "completion_ids") to match the num of generations
        keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]]
        reward_kwargs = {key: [example[key] for example in inputs] for key in keys}

        # This allows for dynamic reward shaping based on training progress.
        reward_kwargs["trainer_state"] = self.state

        for i, (reward_func, reward_processing_class, reward_func_name) in enumerate(
            zip(self.reward_funcs, self.reward_processing_classes, self.reward_func_names)
        ):
            with profiling_context(self, reward_func_name):
                if isinstance(reward_func, nn.Module):  # Module (no PretrainedModel) for compat with compiled models
                    if is_conversational(inputs[0]):
                        messages = [{"messages": p + c} for p, c in zip(prompts, completions)]
                        texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages]
                    else:
                        texts = [p + c for p, c in zip(prompts, completions)]
                    reward_inputs = reward_processing_class(
                        text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False
                    )
                    reward_inputs = super()._prepare_inputs(reward_inputs)
                    with torch.inference_mode():
                        rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0]  # Shape (B*G,)
                else:
                    output_reward_func = reward_func(
                        prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs
                    )
                    # Convert None values to NaN
                    output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func]

                    rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device)

        # If all reward functions return None for a given row, issue a detailed warning
        if torch.isnan(rewards_per_func).all(dim=1).any():
            nan_row_idx = torch.isnan(rewards_per_func).all(dim=1).nonzero(as_tuple=True)[0][0]
            row_reward_kwargs = {key: value[nan_row_idx] for key, value in reward_kwargs.items()}
            row_reward_kwargs["prompt"] = prompts[nan_row_idx]
            row_reward_kwargs["completion"] = completions[nan_row_idx]
            warnings.warn(
                f"All reward functions returned None for the following kwargs: {row_reward_kwargs}. "
                "Please ensure that at least one reward function returns a valid reward."
            )

        # Gather the reward per function: this part is crucial, because the rewards are normalized per group and the
        # completions may be distributed across processes
        rewards_per_func = gather(rewards_per_func)
        return rewards_per_func

    def _generate_and_score_completions(
        self, inputs: list[dict[str, Union[torch.Tensor, Any]]]
    ) -> dict[str, Union[torch.Tensor, Any]]:
        device = self.accelerator.device
        mode = "train" if self.model.training else "eval"

        prompts = [x["prompt"] for x in inputs]

        # We don't yet support visual reward models/function, so we keep a copy of the original text-only prompts for
        # later use in the reward computation. If images are present, we insert {"type": "image"} as required by the
        # VLM chat template.
        original_prompts = copy.deepcopy(prompts)

        # If the prompts are conversational and the inputs contain images, we need to convert the prompts from
        # [{"role": "user", "content": "What color is the sky?"}] to
        # [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What color is the sky?"}]}]
        kwargs = {}
        has_images = "image" in inputs[0]
        if has_images:
            images = [example.get("image") for example in inputs]
            kwargs = {"images": [[img] for img in images]}
            for prompt in prompts:
                if isinstance(prompt, list):
                    for message in prompt:
                        if not isinstance(message, dict):
                            continue
                        content = message.get("content")
                        role = message.get("role")
                        if isinstance(content, str):
                            if role == "user":
                                message["content"] = [{"type": "image"}, {"type": "text", "text": content}]
                            elif role == "system":
                                message["content"] = [{"type": "text", "text": content}]

        prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs]

        prompt_inputs = self.processing_class(
            text=prompts_text,
            return_tensors="pt",
            padding=True,
            padding_side="left",
            add_special_tokens=False,
            **kwargs,
        )
        prompt_inputs = super()._prepare_inputs(prompt_inputs)
        prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]

        if self.max_prompt_length is not None:
            # If max_prompt_length is set, we trim the prompt to keep only the last `max_prompt_length` tokens.
            # Then we decode those tokens back into text. We manually remove leading pad tokens from the decoded text,
            # because we can't use `skip_special_tokens=True` (some special tokens are still needed for generation).
            protected = [self.image_token_id, self.vision_start_token_id, self.vision_end_token_id]
            protected = [token for token in protected if token is not None]
            prompt_ids, prompt_mask = truncate_with_protected_tokens(
                prompt_ids, prompt_mask, self.max_prompt_length, protected
            )

            prompts_text = self.processing_class.batch_decode(
                prompt_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
            )
            prompts_text = [re.sub(rf"^({re.escape(self.pad_token)})+", "", text) for text in prompts_text]

            # The chat template inserts a single image token into the prompt text. However, when this text is later
            # tokenized, the single image token string is expanded into multiple image token IDs, depending on the
            # image size. Since we're detokenizing here, we may see repeated image tokens in the decoded text. We
            # collapse them back into a single token string to match the original template.
            if self.image_token is not None:
                prompts_text = [
                    re.sub(rf"({re.escape(self.image_token)})+", self.image_token, text) for text in prompts_text
                ]

        # Generate completions using either vLLM or regular generation
        if self.use_vllm:
            # First, update the vLLM weights if needed
            if self.state.global_step != self._last_loaded_step:
                self._move_model_to_vllm()
                self._last_loaded_step = self.state.global_step

            # Generate completions using vLLM: gather all prompts and use them in a single call in the main process
            if self.vllm_mode == "server":
                all_prompts_text = gather_object(prompts_text)
                if has_images:
                    all_images = gather_object(images)

                if self.accelerator.is_main_process:
                    # Since 'prompts' contains 'num_generations' duplicates, we first take unique prompts, and generate
                    # num_generations outputs for each one. This is faster than generating outputs for each duplicate
                    # prompt individually.
                    ordered_set_of_prompts = all_prompts_text[:: self.num_generations]

                    if has_images:
                        ordered_set_of_images = all_images[:: self.num_generations]
                    else:
                        ordered_set_of_images = None

                    with profiling_context(self, "vLLM.generate"):
                        completion_ids = self.vllm_client.generate(
                            prompts=ordered_set_of_prompts,
                            images=ordered_set_of_images,
                            n=self.num_generations,
                            repetition_penalty=self.repetition_penalty,
                            temperature=self.temperature,
                            top_p=self.top_p,
                            top_k=-1 if self.top_k is None else self.top_k,
                            min_p=0.0 if self.min_p is None else self.min_p,
                            max_tokens=self.max_completion_length,
                            guided_decoding_regex=self.guided_decoding_regex,
                            generation_kwargs=self.args.generation_kwargs,
                        )
                else:
                    completion_ids = [None] * len(all_prompts_text)
                # Broadcast the completions from the main process to all processes, ensuring each process receives its
                # corresponding slice.
                completion_ids = broadcast_object_list(completion_ids, from_process=0)
                process_slice = slice(
                    self.accelerator.process_index * len(prompts),
                    (self.accelerator.process_index + 1) * len(prompts),
                )
                completion_ids = completion_ids[process_slice]

            # Generate completions using colocated vLLM instances: each device holds vLLM copy and work on their own batch of prompts
            elif self.vllm_mode == "colocate":
                if self.guided_decoding_regex:
                    guided_decoding = GuidedDecodingParams(regex=self.guided_decoding_regex)
                else:
                    guided_decoding = None

                generation_kwargs = {
                    "n": 1,  # vLLM on each GPU generates only 1 in colocate mode
                    "repetition_penalty": self.repetition_penalty,
                    "temperature": self.temperature,
                    "top_p": self.top_p,
                    "top_k": -1 if self.top_k is None else self.top_k,
                    "min_p": 0.0 if self.min_p is None else self.min_p,
                    "max_tokens": self.max_completion_length,
                    "guided_decoding": guided_decoding,
                }
                if self.args.generation_kwargs is not None:
                    generation_kwargs.update(self.args.generation_kwargs)
                sampling_params = SamplingParams(**generation_kwargs)

                if self.vllm_tensor_parallel_size > 1:
                    # Gather prompts from all ranks in the TP group and flatten.
                    # Each rank starts with its own prompts; after gathering, all ranks see the full group set.
                    orig_size = len(prompts_text)
                    gathered_prompts = [None for _ in range(self.vllm_tensor_parallel_size)]
                    torch.distributed.all_gather_object(gathered_prompts, prompts_text, group=self.tp_group)
                    all_prompts_text = [p for sublist in gathered_prompts for p in sublist]

                    if has_images:
                        gathered_images = [None for _ in range(self.vllm_tensor_parallel_size)]
                        torch.distributed.all_gather_object(gathered_images, images, group=self.tp_group)
                        all_images = [img for sublist in gathered_images for img in sublist]
                    else:
                        all_images = None
                else:
                    all_prompts_text = prompts_text
                    all_images = images if has_images else None

                if has_images and all_images:
                    vllm_inputs = []
                    for prompt, image in zip(all_prompts_text, all_images):
                        if image is not None:
                            vllm_inputs.append({"prompt": prompt, "multi_modal_data": {"image": image}})
                        else:
                            vllm_inputs.append(prompt)
                else:
                    vllm_inputs = all_prompts_text

                with profiling_context(self, "vLLM.generate"):
                    all_outputs = self.llm.generate(vllm_inputs, sampling_params=sampling_params, use_tqdm=False)

                completion_ids = [output.token_ids for outputs in all_outputs for output in outputs.outputs]

                if self.vllm_tensor_parallel_size > 1:
                    # Slice completions for this rank within its TP group.
                    # Each rank generates all outputs — we keep only our share.
                    local_rank_in_group = torch.distributed.get_rank(group=self.tp_group)
                    tp_slice = slice(local_rank_in_group * orig_size, (local_rank_in_group + 1) * orig_size)
                    completion_ids = completion_ids[tp_slice]

            # Pad the completions, and concatenate them with the prompts
            completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids]
            completion_ids = pad(completion_ids, padding_value=self.pad_token_id)
            prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1)

        elif self.use_transformers_paged:
            # Re-process inputs for paged generation if needed
            # Note: images are already validated and preprocessed above
            paged_prompt_inputs = self.processing_class(text=prompts_text, **kwargs)
            previous_attn = self.model_wrapped.config._attn_implementation

            if is_flash_attn_2_available():
                self.model_wrapped.config._attn_implementation = "paged_attention"
            else:
                self.model_wrapped.config._attn_implementation = "sdpa_paged"
            with (
                profiling_context(self, "transformers.generate_batch"),
                unwrap_model_for_generation(
                    self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
                ) as unwrapped_model,
                torch.no_grad(),
                FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(),
            ):
                # Cast to the appropriate dtype based on training configuration
                if self.args.bf16:
                    unwrapped_model.to(torch.bfloat16)
                elif self.args.fp16:
                    unwrapped_model.to(torch.float16)
                with torch.inference_mode():
                    all_outputs = unwrapped_model.generate_batch(
                        paged_prompt_inputs.input_ids, generation_config=self.generation_config, progress_bar=False
                    )
            completion_ids = [output.generated_tokens for output in all_outputs.values()]
            completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids]
            completion_ids = pad(completion_ids, padding_value=self.pad_token_id, padding_side="right")
            prompt_ids = [torch.tensor(ids, device=device) for ids in paged_prompt_inputs.input_ids]
            prompt_ids = pad(prompt_ids, padding_value=self.pad_token_id, padding_side="left")
            prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1)
            # Restore the original attention implementation, training mode
            self.model_wrapped.config._attn_implementation = previous_attn
        else:
            # Regular generation path
            with (
                profiling_context(self, "transformers.generate"),
                unwrap_model_for_generation(
                    self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
                ) as unwrapped_model,
                torch.no_grad(),
                FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(),
            ):
                prompt_inputs["input_ids"], prompt_inputs["attention_mask"] = prompt_ids, prompt_mask
                prompt_completion_ids = unwrapped_model.generate(
                    **prompt_inputs, generation_config=self.generation_config, disable_compile=True
                )
            # Compute prompt length and extract completion ids
            prompt_length = prompt_ids.size(1)
            prompt_ids = prompt_completion_ids[:, :prompt_length]
            completion_ids = prompt_completion_ids[:, prompt_length:]

        # Mask everything after the first EOS token
        is_eos = completion_ids == self.eos_token_id
        eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device)
        eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)]
        sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1)
        completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int()

        # Convert tensor to a list of lists of token IDs. This will be passed to the reward function, avoiding the need
        # to re-tokenize completions if the reward is computed from tokens.
        completion_ids_list = [
            [id.item() for id, m in zip(row, mask_row) if m] for row, mask_row in zip(completion_ids, completion_mask)
        ]

        # Sum along sequence dimension (dim=1) to get completion length per sequence, used for logging
        completion_lengths = completion_mask.sum(1)

        # If mask_truncated_completions is enabled, zero out truncated completions in completion_mask
        if self.mask_truncated_completions:
            truncated_completions = ~is_eos.any(dim=1)
            completion_mask = completion_mask * (~truncated_completions).unsqueeze(1).int()

        # Concatenate prompt_mask with completion_mask for logit computation
        attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)  # (B, P+C)

        logits_to_keep = completion_ids.size(1)  # we only need to compute the logits for the completion tokens
        batch_size = self.args.per_device_train_batch_size if mode == "train" else self.args.per_device_eval_batch_size

        with torch.no_grad():
            # If the generation and optimization steps are misaligned—i.e., if generation does not occur at the end of
            # a full optimizer step (when gradient_accumulation_steps is not a multiple of generate_every)—then the
            # samples may come from an earlier version of the model. In that case, we need to track old_per_token_logps
            # for importance sampling. If the steps are aligned, importance sampling isn't necessary and we set
            # old_per_token_logps to None.
            generate_every = self.args.steps_per_generation * self.num_iterations  # generation frequency
            if self.args.gradient_accumulation_steps % generate_every != 0:
                old_per_token_logps, _ = self._get_per_token_logps_and_entropies(
                    self.model,
                    prompt_completion_ids,
                    attention_mask,
                    logits_to_keep,
                    batch_size,
                    pixel_values=prompt_inputs.get("pixel_values"),
                    image_grid_thw=prompt_inputs.get("image_grid_thw"),
                    pixel_attention_mask=prompt_inputs.get("pixel_attention_mask"),
                    image_sizes=prompt_inputs.get("image_sizes"),
                )
            else:
                old_per_token_logps = None

            # Compute the per-token log probabilities for the reference model
            if self.beta != 0.0:
                if self.ref_model is not None:
                    ref_per_token_logps, _ = self._get_per_token_logps_and_entropies(
                        self.ref_model,
                        prompt_completion_ids,
                        attention_mask,
                        logits_to_keep,
                        batch_size=batch_size,
                        pixel_values=prompt_inputs.get("pixel_values"),
                        image_grid_thw=prompt_inputs.get("image_grid_thw"),
                        pixel_attention_mask=prompt_inputs.get("pixel_attention_mask"),
                        image_sizes=prompt_inputs.get("image_sizes"),
                    )
                else:
                    with self.accelerator.unwrap_model(self.model).disable_adapter():
                        ref_per_token_logps, _ = self._get_per_token_logps_and_entropies(
                            self.model,
                            prompt_completion_ids,
                            attention_mask,
                            logits_to_keep,
                            batch_size=batch_size,
                            pixel_values=prompt_inputs.get("pixel_values"),
                            image_grid_thw=prompt_inputs.get("image_grid_thw"),
                            pixel_attention_mask=prompt_inputs.get("pixel_attention_mask"),
                            image_sizes=prompt_inputs.get("image_sizes"),
                        )
            else:
                ref_per_token_logps = None

        # Decode the generated completions
        completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
        if is_conversational(inputs[0]):
            completions = []
            for prompt, completion in zip(prompts, completions_text):
                bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else ""
                completions.append([{"role": "assistant", "content": bootstrap + completion}])
        else:
            completions = completions_text

        # Calculate rewards for each reward function. rewards_per_func aggregates rewards across all processes. This is
        # important because rewards will be normalized per group, and completions are distributed. We will later slice
        # rewards_per_func to extract each process's subset.
        rewards_per_func = self._calculate_rewards(inputs, original_prompts, completions, completion_ids_list)

        # Apply weights to each reward function's output and sum
        rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1)

        # Compute grouped-wise rewards
        mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1)
        std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1)
        is_std_zero = torch.isclose(std_grouped_rewards, torch.zeros_like(std_grouped_rewards))

        # Normalize the rewards to compute the advantages
        mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
        std_grouped_rewards = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
        advantages = rewards - mean_grouped_rewards
        if self.scale_rewards:
            advantages = advantages / (std_grouped_rewards + 1e-4)

        # Slice to keep only the local part of the data
        process_slice = slice(
            self.accelerator.process_index * len(prompts),
            (self.accelerator.process_index + 1) * len(prompts),
        )
        all_process_advantages = advantages.clone()  # keep the aggregated advantages for logging
        advantages = advantages[process_slice]

        # Log the metrics
        if mode == "train":
            self.state.num_input_tokens_seen += self.accelerator.gather(attention_mask.sum()).sum().item()
        self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen]

        # Log completion lengths, mean, min, max
        agg_completion_lengths = self.accelerator.gather(completion_lengths)
        self._metrics[mode]["completions/mean_length"].append(agg_completion_lengths.float().mean().item())
        self._metrics[mode]["completions/min_length"].append(agg_completion_lengths.float().min().item())
        self._metrics[mode]["completions/max_length"].append(agg_completion_lengths.float().max().item())

        # Identify sequences that terminated with EOS and log their lengths
        agg_terminated_with_eos = self.accelerator.gather(is_eos.any(dim=1))
        term_completion_lengths = agg_completion_lengths[agg_terminated_with_eos]
        clipped_completions_ratio = 1 - len(term_completion_lengths) / len(agg_completion_lengths)
        self._metrics[mode]["completions/clipped_ratio"].append(clipped_completions_ratio)
        if len(term_completion_lengths) == 0:  # edge case where no terminated sequences are found
            term_completion_lengths = torch.zeros(1, device=device)
        self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item())
        self._metrics[mode]["completions/min_terminated_length"].append(term_completion_lengths.float().min().item())
        self._metrics[mode]["completions/max_terminated_length"].append(term_completion_lengths.float().max().item())

        # Calculate mean reward per function, but only for samples where the function was applied (non-NaN values)
        for i, reward_func_name in enumerate(self.reward_func_names):
            mean_rewards = torch.nanmean(rewards_per_func[:, i]).item()
            self._metrics[mode][f"rewards/{reward_func_name}/mean"].append(mean_rewards)
            std_rewards = nanstd(rewards_per_func[:, i]).item()
            self._metrics[mode][f"rewards/{reward_func_name}/std"].append(std_rewards)
        self._metrics[mode]["reward"].append(mean_grouped_rewards.mean().item())
        self._metrics[mode]["reward_std"].append(std_grouped_rewards.mean().item())
        self._metrics[mode]["frac_reward_zero_std"].append(is_std_zero.float().mean().item())

        # Log prompt and completion texts
        self._logs["prompt"].extend(gather_object(prompts_text))
        self._logs["completion"].extend(gather_object(completions_text))
        for i, name in enumerate(self.reward_func_names):
            self._logs["rewards"][name].extend(rewards_per_func[:, i].tolist())
        self._logs["advantages"].extend(all_process_advantages.tolist())

        if has_images:
            self._logs["image"].extend(gather_object(images))

        output = {
            "prompt_ids": prompt_ids,
            "prompt_mask": prompt_mask,
            "completion_ids": completion_ids,
            "completion_mask": completion_mask,
            "advantages": advantages,
        }
        if old_per_token_logps is not None:
            output["old_per_token_logps"] = old_per_token_logps
        if ref_per_token_logps is not None:
            output["ref_per_token_logps"] = ref_per_token_logps
        if "pixel_values" in prompt_inputs:
            output["pixel_values"] = prompt_inputs["pixel_values"]
        if "image_grid_thw" in prompt_inputs:
            output["image_grid_thw"] = prompt_inputs["image_grid_thw"]
        if "pixel_attention_mask" in prompt_inputs:
            output["pixel_attention_mask"] = prompt_inputs["pixel_attention_mask"]
        if "image_sizes" in prompt_inputs:
            output["image_sizes"] = prompt_inputs["image_sizes"]
        return output

    def compute_liger_loss(self, unwrapped_model, inputs):
        # Compute the per-token log probabilities for the model
        prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
        completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
        input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
        attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
        logits_to_keep = completion_ids.size(1)  # we only need to compute the logits for the completion tokens

        # Get the last hidden state of the model
        last_hidden_state = self._get_last_hidden_state(
            unwrapped_model,
            input_ids,
            attention_mask,
            logits_to_keep,
            inputs.get("pixel_values"),
            inputs.get("image_grid_thw"),
            inputs.get("pixel_attention_mask"),
            inputs.get("image_sizes"),
        )

        # compute loss and metrics using liger grpo loss
        loss, metrics = self.liger_grpo_loss(
            _input=last_hidden_state,
            lin_weight=unwrapped_model.lm_head.weight,
            selected_token_ids=completion_ids,
            attention_mask=completion_mask,
            advantages=inputs["advantages"],
            bias=unwrapped_model.lm_head.bias,
            old_per_token_logps=inputs.get("old_per_token_logps"),
            ref_per_token_logps=inputs.get("ref_per_token_logps"),
        )
        # Extract metrics from the liger_grpo_loss output
        # KL divergence is the first metric when beta is non-zero
        mean_kl = metrics[0] if self.beta != 0.0 else None
        clip_ratio = metrics[-1]

        mode = "train" if self.model.training else "eval"
        if self.beta != 0.0:
            self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).mean().item())
        self._metrics[mode]["clip_ratio"].append(self.accelerator.gather(clip_ratio).mean().item())
        return loss

    @profiling_decorator
    def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
        if return_outputs:
            raise ValueError("The GRPOTrainer does not support returning outputs")
        if self.use_liger_loss:
            # Compute the loss using the liger grpo loss
            unwrapped_model = self.accelerator.unwrap_model(model)
            return self._forward_redirection(model, unwrapped_model, self.compute_liger_loss, unwrapped_model, inputs)
        else:
            return self._compute_loss(model, inputs)

    def _compute_loss(self, model, inputs):
        # Compute the per-token log probabilities for the model
        prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
        completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
        input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
        attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
        logits_to_keep = completion_ids.size(1)  # we only need to compute the logits for the completion tokens

        # Compute the per_token_logps and the entropy at each position in the completion
        per_token_logps, entropies = self._get_per_token_logps_and_entropies(
            model,
            input_ids,
            attention_mask,
            logits_to_keep,
            compute_entropy=True,
            pixel_values=inputs.get("pixel_values"),
            image_grid_thw=inputs.get("image_grid_thw"),
            pixel_attention_mask=inputs.get("pixel_attention_mask"),
            image_sizes=inputs.get("image_sizes"),
        )

        if self.top_entropy_quantile < 1.0:
            entropy_mask = self.get_high_entropy_mask(entropies, completion_mask, 1 - self.top_entropy_quantile)
        else:
            entropy_mask = None

        # Compute the KL divergence between the model and the reference model
        if self.beta != 0.0:
            ref_per_token_logps = inputs["ref_per_token_logps"]
            per_token_kl = (
                torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
            )

        # Compute the loss
        advantages = inputs["advantages"]
        # When using num_iterations == 1 and steps_per_generation <= gradient_accumulation_steps
        # old_per_token_logps == per_token_logps, so we can skip it's computation
        # (see _generate_and_score_completions) and use per_token_logps.detach() instead.
        old_per_token_logps = inputs.get("old_per_token_logps")
        old_per_token_logps = per_token_logps.detach() if old_per_token_logps is None else old_per_token_logps

        log_ratio = per_token_logps - old_per_token_logps
        if self.importance_sampling_level == "token":
            log_importance_weights = log_ratio
        elif self.importance_sampling_level == "sequence":
            log_importance_weights = (log_ratio * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)
            log_importance_weights = log_importance_weights.unsqueeze(-1)
        else:
            raise ValueError(
                f"Unknown importance sampling level: {self.importance_sampling_level}. Possible values are 'token' "
                "and 'sequence'."
            )
        # From here, log_importance_weights (and all subsequent tensors, coef_1, coef_2, etc.) shape depends on
        # importance_sampling_level: "token" level: (B, T); "sequence" level: (B, 1)

        coef_1 = torch.exp(log_importance_weights)
        coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high)

        # Two-sided clipping
        if self.args.delta is not None:
            coef_1 = torch.clamp(coef_1, max=self.args.delta)

        per_token_loss1 = coef_1 * advantages.unsqueeze(1)
        per_token_loss2 = coef_2 * advantages.unsqueeze(1)
        per_token_loss = -torch.min(per_token_loss1, per_token_loss2)
        if entropy_mask is not None:
            per_token_loss = per_token_loss * entropy_mask
        if self.beta != 0.0:
            per_token_loss = per_token_loss + self.beta * per_token_kl

        if self.loss_type == "grpo":
            loss = ((per_token_loss * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)).mean()
        elif self.loss_type == "bnpo":
            loss = (per_token_loss * completion_mask).sum() / completion_mask.sum().clamp(min=1.0)
        elif self.loss_type == "dr_grpo":
            loss = (per_token_loss * completion_mask).sum() / (per_token_loss.size(0) * self.max_completion_length)
        else:
            raise ValueError(f"Unknown loss type: {self.loss_type}")

        # Log the metrics
        mode = "train" if self.model.training else "eval"

        completion_token_count = completion_mask.sum().clamp(min=1.0)

        def masked_batch_mean(x):
            if x.shape[1] == 1:  # when importance_sampling_level == "sequence"
                return x.mean()
            else:
                return (x * completion_mask).sum() / completion_token_count

        if self.beta != 0.0:
            mean_kl = masked_batch_mean(per_token_kl)
            self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).nanmean().item())

        mean_entropy = masked_batch_mean(entropies)
        self._metrics[mode]["entropy"].append(self.accelerator.gather(mean_entropy).nanmean().item())

        # Compute the clipped probability ratios
        is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0)
        is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0)
        is_region_clipped = is_low_clipped | is_high_clipped

        low_clip = masked_batch_mean(is_low_clipped.float())
        high_clip = masked_batch_mean(is_high_clipped.float())
        clip_ratio = masked_batch_mean(is_region_clipped.float())

        gathered_low_clip = self.accelerator.gather(low_clip)
        self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item())
        self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item())
        gathered_high_clip = self.accelerator.gather(high_clip)
        self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item())
        self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item())
        gathered_clip_ratio = self.accelerator.gather(clip_ratio)
        self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item())
        return loss

    def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None):
        inputs = self._prepare_inputs(inputs)
        with torch.no_grad():
            with self.compute_loss_context_manager():
                loss = self.compute_loss(model, inputs)
            loss = loss.mean().detach()
        return loss, None, None

    def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
        mode = "train" if self.model.training else "eval"
        metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()}  # average the metrics

        # This method can be called both in training and evaluation. When called in evaluation, the keys in `logs`
        # start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format.
        if mode == "eval":
            metrics = {f"eval_{key}": val for key, val in metrics.items()}

        logs = {**logs, **metrics}
        super().log(logs, start_time)
        self._metrics[mode].clear()

        if self.accelerator.is_main_process and self.log_completions:
            if is_rich_available():
                print_prompt_completions_sample(
                    self._logs["prompt"],
                    self._logs["completion"],
                    self._logs["rewards"],
                    self._logs["advantages"],
                    self.state.global_step,
                    self.num_completions_to_print,
                )

            if self.args.report_to and "wandb" in self.args.report_to and wandb.run is not None:
                import pandas as pd

                table = {
                    "step": [str(self.state.global_step)] * len(self._logs["prompt"]),
                    "prompt": self._logs["prompt"],
                    "completion": self._logs["completion"],
                    **self._logs["rewards"],
                    "advantage": self._logs["advantages"],
                }

                if self._logs["image"]:
                    table["image"] = []
                    for img in self._logs["image"]:
                        if img is not None:
                            # Convert images to wandb Image objects for proper visualization
                            table["image"].append(wandb.Image(img))
                        else:
                            table["image"].append(None)

                df = pd.DataFrame(table)
                if self.wandb_log_unique_prompts:
                    df = df.drop_duplicates(subset=["prompt"])
                wandb.log({"completions": wandb.Table(dataframe=df)})

    # Ensure the model card is saved along with the checkpoint
    def _save_checkpoint(self, model, trial):
        if self.args.hub_model_id is None:
            model_name = Path(self.args.output_dir).name
        else:
            model_name = self.args.hub_model_id.split("/")[-1]
        self.create_model_card(model_name=model_name)
        super()._save_checkpoint(model, trial)

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        # normalize `tags` to a mutable set
        if tags is None:
            tags = set()
        elif isinstance(tags, str):
            tags = {tags}
        else:
            tags = set(tags)

        if hasattr(self.model.config, "unsloth_version"):
            tags.add("unsloth")

        tags.update(self._tag_names)

        citation = textwrap.dedent(
            """\
            @article{zhihong2024deepseekmath,
                title        = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
                author       = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
                year         = 2024,
                eprint       = {arXiv:2402.03300},
            }
            """
        )

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.url if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="GRPO",
            trainer_citation=citation,
            paper_title="DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models",
            paper_id="2402.03300",
        )

        model_card.save(os.path.join(self.args.output_dir, "README.md"))