# This is the hyperparameter configuration file for ParallelWavegan. # Please make sure this is adjusted for the LJSpeech dataset. If you want to # apply to the other dataset, you might need to carefully change some parameters. # This configuration performs 4000k iters. # Original: https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v1.yaml ########################################################### # FEATURE EXTRACTION SETTING # ########################################################### sampling_rate: 22050 hop_size: 256 # Hop size. format: "npy" ########################################################### # GENERATOR NETWORK ARCHITECTURE SETTING # ########################################################### model_type: "parallel_wavegan_generator" parallel_wavegan_generator_params: out_channels: 1 # Number of output channels. kernel_size: 3 # Kernel size of dilated convolution. n_layers: 30 # Number of residual block layers. stacks: 3 # Number of stacks i.e., dilation cycles. residual_channels: 64 # Number of channels in residual conv. gate_channels: 128 # Number of channels in gated conv. skip_channels: 64 # Number of channels in skip conv. aux_channels: 80 # Number of channels for auxiliary feature conv. # Must be the same as num_mels. aux_context_window: 2 # Context window size for auxiliary feature. # If set to 2, previous 2 and future 2 frames will be considered. dropout: 0.0 # Dropout rate. 0.0 means no dropout applied. upsample_params: # Upsampling network parameters. upsample_scales: [4, 4, 4, 4] # Upsampling scales. Prodcut of these must be the same as hop size. ########################################################### # DISCRIMINATOR NETWORK ARCHITECTURE SETTING # ########################################################### parallel_wavegan_discriminator_params: out_channels: 1 # Number of output channels. kernel_size: 3 # Number of output channels. n_layers: 10 # Number of conv layers. conv_channels: 64 # Number of chnn layers. use_bias: true # Whether to use bias parameter in conv. nonlinear_activation: "LeakyReLU" # Nonlinear function after each conv. nonlinear_activation_params: # Nonlinear function parameters alpha: 0.2 # Alpha in LeakyReLU. ########################################################### # STFT LOSS SETTING # ########################################################### stft_loss_params: fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss. frame_steps: [120, 240, 50] # List of hop size for STFT-based loss frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss. ########################################################### # ADVERSARIAL LOSS SETTING # ########################################################### lambda_adv: 4.0 # Loss balancing coefficient. ########################################################### # DATA LOADER SETTING # ########################################################### batch_size: 6 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1. batch_max_steps: 25600 # Length of each audio in batch for training. Make sure dividable by hop_size. batch_max_steps_valid: 81920 # Length of each audio for validation. Make sure dividable by hope_size. remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps. allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory. is_shuffle: true # shuffle dataset after each epoch. ########################################################### # OPTIMIZER & SCHEDULER SETTING # ########################################################### generator_optimizer_params: lr_fn: "ExponentialDecay" lr_params: initial_learning_rate: 0.0005 decay_steps: 200000 decay_rate: 0.5 discriminator_optimizer_params: lr_fn: "ExponentialDecay" lr_params: initial_learning_rate: 0.0005 decay_steps: 200000 decay_rate: 0.5 gradient_accumulation_steps: 1 ########################################################### # INTERVAL SETTING # ########################################################### discriminator_train_start_steps: 100000 # steps begin training discriminator train_max_steps: 400000 # Number of training steps. save_interval_steps: 5000 # Interval steps to save checkpoint. eval_interval_steps: 2000 # Interval steps to evaluate the network. log_interval_steps: 200 # Interval steps to record the training log. ########################################################### # OTHER SETTING # ########################################################### num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.