vishurdx's picture
Update app/py
df96f45 verified
raw
history blame
6.79 kB
import streamlit as st
import pandas as pd
from eventbrite_scrapper import Eventbrite
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from datetime import datetime
from dataclasses import dataclass, field, replace
from typing import List, Any
# Dataclasses for event structure
@dataclass(frozen=True)
class EventAddress:
latitude: float = None
longitude: float = None
region: str = None
postal_code: str = None
address_1: str = None
@dataclass(frozen=True)
class EventVenue:
id: str = None
name: str = None
url: str = None
address: EventAddress = field(default_factory=lambda: EventAddress())
@dataclass(frozen=True)
class EventImage:
url: str = None
@dataclass(frozen=True)
class EventTag:
text: str = None
@dataclass(frozen=True)
class Event:
id: str = None
name: str = None
url: str = None
is_online_event: bool = False
short_description: str = None
published_datetime: datetime = None
start_datetime: datetime = None
end_datetime: datetime = None
timezone: str = None
hide_start_date: bool = False
hide_end_date: bool = False
parent_event_url: str = None
series_id: str = None
primary_venue: EventVenue = field(default_factory=lambda: EventVenue())
tickets_url: str = None
checkout_flow: str = None
language: str = None
image: EventImage = field(default_factory=lambda: EventImage())
tags_categories: tuple = field(default_factory=tuple)
tags_formats: tuple = field(default_factory=tuple)
tags_by_organizer: tuple = field(default_factory=tuple)
def __hash__(self):
return hash(self.id) if self.id else hash((self.name, self.is_online_event, self.start_datetime, self.primary_venue.name))
# Event Retrieval Pipeline
class EventbriteRAGPipeline:
def __init__(self, events: List[Event], embedding_model: str = 'all-MiniLM-L6-v2'):
self.events = [
replace(
event,
tags_categories=tuple(event.tags_categories),
tags_formats=tuple(event.tags_formats),
tags_by_organizer=tuple(event.tags_by_organizer),
)
for event in events
]
self.model = SentenceTransformer(embedding_model)
self.event_embeddings = self._compute_embeddings()
def _compute_embeddings(self) -> List[np.ndarray]:
def event_to_text(event: Event) -> str:
text_parts = [
event.name or '',
event.short_description or '',
' '.join(tag.text for tag in event.tags_categories),
' '.join(tag.text for tag in event.tags_formats),
' '.join(tag.text for tag in event.tags_by_organizer),
event.primary_venue.name or '',
event.primary_venue.address.region or '',
event.language or ''
]
return ' '.join(filter(bool, text_parts))
return self.model.encode([event_to_text(event) for event in self.events])
def query_events(self, query: str, top_k: int = 5) -> List[Event]:
# query_embedding = self.model.encode(query).reshape(1, -1)
# similarities = cosine_similarity(query_embedding, self.event_embeddings)[0]
# top_indices = similarities.argsort()[-top_k:][::-1]
# return [self.events[idx] for idx in top_indices]
query_embedding = self.model.encode(query).reshape(1, -1)
similarities = cosine_similarity(query_embedding, self.event_embeddings)[0]
top_indices = similarities.argsort()[-(top_k * 2):][::-1] # Get extra events to filter duplicates
unique_events = {}
for idx in top_indices:
event = self.events[idx]
if event.id not in unique_events:
unique_events[event.id] = event
if len(unique_events) == top_k:
break
return list(unique_events.values())
# Event Evaluator
class EventEvaluator:
def __init__(self, pipeline):
self.pipeline = pipeline
def evaluate_query(self, query):
"""Evaluate a single query and return results."""
# top_events = self.pipeline.query_events(query)
# results = []
# for event in top_events:
# result = {
# "Event Name": event.name,
# "Online Event": event.is_online_event,
# "Start Time": event.start_datetime,
# "Venue Address": event.primary_venue.address.address_1,
# "Venue Name": event.primary_venue.name,
# "Description": event.short_description,
# "Tickets URL": event.tickets_url,
# "Language": event.language,
# "Categories": [tag.text for tag in event.tags_categories],
# }
# results.append(result)
top_events = self.pipeline.query_events(query)
results = []
seen = set()
for event in top_events:
if event.id not in seen: # Ensure unique events
seen.add(event.id)
results.append({
"Event Name": event.name,
"Online Event": event.is_online_event,
"Start Time": event.start_datetime,
"Venue Address": event.primary_venue.address.address_1,
"Venue Name": event.primary_venue.name,
"Description": event.short_description,
"Tickets URL": event.tickets_url,
"Language": event.language,
"Categories": [tag.text for tag in event.tags_categories],
})
return results
# Fetch events from Eventbrite API
client = Eventbrite()
events = client.search_events.get_results(
region="ca--los-angeles",
dt_start="2025-02-26",
dt_end="2025-02-28",
max_pages=6,
)
# Initialize pipeline and evaluator
rag_pipeline = EventbriteRAGPipeline(events)
evaluator = EventEvaluator(rag_pipeline)
# Streamlit UI
st.title("🎟️ Event Search App")
st.write("Find events based on your interests!")
query = st.text_input("πŸ”Ž Enter your search query:")
# if query:
# results = evaluator.evaluate_query(query)
# if results:
# df = pd.DataFrame(results)
# st.dataframe(df) # Display results as a formatted table
# else:
# st.warning("No results found.")
if query:
print(f"πŸ” Processing query: {query}") # Debugging query input
results = evaluator.evaluate_query(query)
if results:
df = pd.DataFrame(results)
st.dataframe(df) # Display results as a formatted table
else:
st.warning("No results found.")