Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from eventbrite_scrapper import Eventbrite | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
from datetime import datetime | |
from dataclasses import dataclass, field, replace | |
from typing import List, Any | |
# Dataclasses for event structure | |
class EventAddress: | |
latitude: float = None | |
longitude: float = None | |
region: str = None | |
postal_code: str = None | |
address_1: str = None | |
class EventVenue: | |
id: str = None | |
name: str = None | |
url: str = None | |
address: EventAddress = field(default_factory=lambda: EventAddress()) | |
class EventImage: | |
url: str = None | |
class EventTag: | |
text: str = None | |
class Event: | |
id: str = None | |
name: str = None | |
url: str = None | |
is_online_event: bool = False | |
short_description: str = None | |
published_datetime: datetime = None | |
start_datetime: datetime = None | |
end_datetime: datetime = None | |
timezone: str = None | |
hide_start_date: bool = False | |
hide_end_date: bool = False | |
parent_event_url: str = None | |
series_id: str = None | |
primary_venue: EventVenue = field(default_factory=lambda: EventVenue()) | |
tickets_url: str = None | |
checkout_flow: str = None | |
language: str = None | |
image: EventImage = field(default_factory=lambda: EventImage()) | |
tags_categories: tuple = field(default_factory=tuple) | |
tags_formats: tuple = field(default_factory=tuple) | |
tags_by_organizer: tuple = field(default_factory=tuple) | |
def __hash__(self): | |
return hash(self.id) if self.id else hash((self.name, self.is_online_event, self.start_datetime, self.primary_venue.name)) | |
# Event Retrieval Pipeline | |
class EventbriteRAGPipeline: | |
def __init__(self, events: List[Event], embedding_model: str = 'all-MiniLM-L6-v2'): | |
self.events = [ | |
replace( | |
event, | |
tags_categories=tuple(event.tags_categories), | |
tags_formats=tuple(event.tags_formats), | |
tags_by_organizer=tuple(event.tags_by_organizer), | |
) | |
for event in events | |
] | |
self.model = SentenceTransformer(embedding_model) | |
self.event_embeddings = self._compute_embeddings() | |
def _compute_embeddings(self) -> List[np.ndarray]: | |
def event_to_text(event: Event) -> str: | |
text_parts = [ | |
event.name or '', | |
event.short_description or '', | |
' '.join(tag.text for tag in event.tags_categories), | |
' '.join(tag.text for tag in event.tags_formats), | |
' '.join(tag.text for tag in event.tags_by_organizer), | |
event.primary_venue.name or '', | |
event.primary_venue.address.region or '', | |
event.language or '' | |
] | |
return ' '.join(filter(bool, text_parts)) | |
return self.model.encode([event_to_text(event) for event in self.events]) | |
def query_events(self, query: str, top_k: int = 5) -> List[Event]: | |
# query_embedding = self.model.encode(query).reshape(1, -1) | |
# similarities = cosine_similarity(query_embedding, self.event_embeddings)[0] | |
# top_indices = similarities.argsort()[-top_k:][::-1] | |
# return [self.events[idx] for idx in top_indices] | |
query_embedding = self.model.encode(query).reshape(1, -1) | |
similarities = cosine_similarity(query_embedding, self.event_embeddings)[0] | |
top_indices = similarities.argsort()[-(top_k * 2):][::-1] # Get extra events to filter duplicates | |
unique_events = {} | |
for idx in top_indices: | |
event = self.events[idx] | |
if event.id not in unique_events: | |
unique_events[event.id] = event | |
if len(unique_events) == top_k: | |
break | |
return list(unique_events.values()) | |
# Event Evaluator | |
class EventEvaluator: | |
def __init__(self, pipeline): | |
self.pipeline = pipeline | |
def evaluate_query(self, query): | |
"""Evaluate a single query and return results.""" | |
# top_events = self.pipeline.query_events(query) | |
# results = [] | |
# for event in top_events: | |
# result = { | |
# "Event Name": event.name, | |
# "Online Event": event.is_online_event, | |
# "Start Time": event.start_datetime, | |
# "Venue Address": event.primary_venue.address.address_1, | |
# "Venue Name": event.primary_venue.name, | |
# "Description": event.short_description, | |
# "Tickets URL": event.tickets_url, | |
# "Language": event.language, | |
# "Categories": [tag.text for tag in event.tags_categories], | |
# } | |
# results.append(result) | |
top_events = self.pipeline.query_events(query) | |
results = [] | |
seen = set() | |
for event in top_events: | |
if event.id not in seen: # Ensure unique events | |
seen.add(event.id) | |
results.append({ | |
"Event Name": event.name, | |
"Online Event": event.is_online_event, | |
"Start Time": event.start_datetime, | |
"Venue Address": event.primary_venue.address.address_1, | |
"Venue Name": event.primary_venue.name, | |
"Description": event.short_description, | |
"Tickets URL": event.tickets_url, | |
"Language": event.language, | |
"Categories": [tag.text for tag in event.tags_categories], | |
}) | |
return results | |
# Fetch events from Eventbrite API | |
client = Eventbrite() | |
events = client.search_events.get_results( | |
region="ca--los-angeles", | |
dt_start="2025-02-26", | |
dt_end="2025-02-28", | |
max_pages=6, | |
) | |
# Initialize pipeline and evaluator | |
rag_pipeline = EventbriteRAGPipeline(events) | |
evaluator = EventEvaluator(rag_pipeline) | |
# Streamlit UI | |
st.title("ποΈ Event Search App") | |
st.write("Find events based on your interests!") | |
query = st.text_input("π Enter your search query:") | |
# if query: | |
# results = evaluator.evaluate_query(query) | |
# if results: | |
# df = pd.DataFrame(results) | |
# st.dataframe(df) # Display results as a formatted table | |
# else: | |
# st.warning("No results found.") | |
if query: | |
print(f"π Processing query: {query}") # Debugging query input | |
results = evaluator.evaluate_query(query) | |
if results: | |
df = pd.DataFrame(results) | |
st.dataframe(df) # Display results as a formatted table | |
else: | |
st.warning("No results found.") | |