Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from eventbrite_scrapper import Eventbrite
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
+
import numpy as np
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from dataclasses import dataclass, field, replace
|
| 9 |
+
from typing import List, Any
|
| 10 |
+
|
| 11 |
+
# Dataclasses for event structure
|
| 12 |
+
@dataclass(frozen=True)
|
| 13 |
+
class EventAddress:
|
| 14 |
+
latitude: float = None
|
| 15 |
+
longitude: float = None
|
| 16 |
+
region: str = None
|
| 17 |
+
postal_code: str = None
|
| 18 |
+
address_1: str = None
|
| 19 |
+
|
| 20 |
+
@dataclass(frozen=True)
|
| 21 |
+
class EventVenue:
|
| 22 |
+
id: str = None
|
| 23 |
+
name: str = None
|
| 24 |
+
url: str = None
|
| 25 |
+
address: EventAddress = field(default_factory=lambda: EventAddress())
|
| 26 |
+
|
| 27 |
+
@dataclass(frozen=True)
|
| 28 |
+
class EventImage:
|
| 29 |
+
url: str = None
|
| 30 |
+
|
| 31 |
+
@dataclass(frozen=True)
|
| 32 |
+
class EventTag:
|
| 33 |
+
text: str = None
|
| 34 |
+
|
| 35 |
+
@dataclass(frozen=True)
|
| 36 |
+
class Event:
|
| 37 |
+
id: str = None
|
| 38 |
+
name: str = None
|
| 39 |
+
url: str = None
|
| 40 |
+
is_online_event: bool = False
|
| 41 |
+
short_description: str = None
|
| 42 |
+
published_datetime: datetime = None
|
| 43 |
+
start_datetime: datetime = None
|
| 44 |
+
end_datetime: datetime = None
|
| 45 |
+
timezone: str = None
|
| 46 |
+
hide_start_date: bool = False
|
| 47 |
+
hide_end_date: bool = False
|
| 48 |
+
parent_event_url: str = None
|
| 49 |
+
series_id: str = None
|
| 50 |
+
primary_venue: EventVenue = field(default_factory=lambda: EventVenue())
|
| 51 |
+
tickets_url: str = None
|
| 52 |
+
checkout_flow: str = None
|
| 53 |
+
language: str = None
|
| 54 |
+
image: EventImage = field(default_factory=lambda: EventImage())
|
| 55 |
+
tags_categories: tuple = field(default_factory=tuple)
|
| 56 |
+
tags_formats: tuple = field(default_factory=tuple)
|
| 57 |
+
tags_by_organizer: tuple = field(default_factory=tuple)
|
| 58 |
+
|
| 59 |
+
def __hash__(self):
|
| 60 |
+
return hash(self.id) if self.id else hash((self.name, self.is_online_event, self.start_datetime, self.primary_venue.name))
|
| 61 |
+
|
| 62 |
+
# Event Retrieval Pipeline
|
| 63 |
+
class EventbriteRAGPipeline:
|
| 64 |
+
def __init__(self, events: List[Event], embedding_model: str = 'all-MiniLM-L6-v2'):
|
| 65 |
+
self.events = [
|
| 66 |
+
replace(
|
| 67 |
+
event,
|
| 68 |
+
tags_categories=tuple(event.tags_categories),
|
| 69 |
+
tags_formats=tuple(event.tags_formats),
|
| 70 |
+
tags_by_organizer=tuple(event.tags_by_organizer),
|
| 71 |
+
)
|
| 72 |
+
for event in events
|
| 73 |
+
]
|
| 74 |
+
self.model = SentenceTransformer(embedding_model)
|
| 75 |
+
self.event_embeddings = self._compute_embeddings()
|
| 76 |
+
|
| 77 |
+
def _compute_embeddings(self) -> List[np.ndarray]:
|
| 78 |
+
def event_to_text(event: Event) -> str:
|
| 79 |
+
text_parts = [
|
| 80 |
+
event.name or '',
|
| 81 |
+
event.short_description or '',
|
| 82 |
+
' '.join(tag.text for tag in event.tags_categories),
|
| 83 |
+
' '.join(tag.text for tag in event.tags_formats),
|
| 84 |
+
' '.join(tag.text for tag in event.tags_by_organizer),
|
| 85 |
+
event.primary_venue.name or '',
|
| 86 |
+
event.primary_venue.address.region or '',
|
| 87 |
+
event.language or ''
|
| 88 |
+
]
|
| 89 |
+
return ' '.join(filter(bool, text_parts))
|
| 90 |
+
|
| 91 |
+
return self.model.encode([event_to_text(event) for event in self.events])
|
| 92 |
+
|
| 93 |
+
def query_events(self, query: str, top_k: int = 5) -> List[Event]:
|
| 94 |
+
query_embedding = self.model.encode(query).reshape(1, -1)
|
| 95 |
+
similarities = cosine_similarity(query_embedding, self.event_embeddings)[0]
|
| 96 |
+
top_indices = similarities.argsort()[-top_k:][::-1]
|
| 97 |
+
return [self.events[idx] for idx in top_indices]
|
| 98 |
+
|
| 99 |
+
# Event Evaluator
|
| 100 |
+
class EventEvaluator:
|
| 101 |
+
def __init__(self, pipeline):
|
| 102 |
+
self.pipeline = pipeline
|
| 103 |
+
|
| 104 |
+
def evaluate_query(self, query):
|
| 105 |
+
"""Evaluate a single query and return results."""
|
| 106 |
+
top_events = self.pipeline.query_events(query)
|
| 107 |
+
results = []
|
| 108 |
+
for event in top_events:
|
| 109 |
+
result = {
|
| 110 |
+
"Event Name": event.name,
|
| 111 |
+
"Online Event": event.is_online_event,
|
| 112 |
+
"Start Time": event.start_datetime,
|
| 113 |
+
"Venue Address": event.primary_venue.address.address_1,
|
| 114 |
+
"Venue Name": event.primary_venue.name,
|
| 115 |
+
"Description": event.short_description,
|
| 116 |
+
"Tickets URL": event.tickets_url,
|
| 117 |
+
"Language": event.language,
|
| 118 |
+
"Categories": [tag.text for tag in event.tags_categories],
|
| 119 |
+
}
|
| 120 |
+
results.append(result)
|
| 121 |
+
return results
|
| 122 |
+
|
| 123 |
+
# Fetch events from Eventbrite API
|
| 124 |
+
client = Eventbrite()
|
| 125 |
+
events = client.search_events.get_results(
|
| 126 |
+
region="ca--los-angeles",
|
| 127 |
+
dt_start="2024-11-28",
|
| 128 |
+
dt_end="2024-12-25",
|
| 129 |
+
max_pages=4,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# Initialize pipeline and evaluator
|
| 133 |
+
rag_pipeline = EventbriteRAGPipeline(events)
|
| 134 |
+
evaluator = EventEvaluator(rag_pipeline)
|
| 135 |
+
|
| 136 |
+
# Streamlit UI
|
| 137 |
+
st.title("🎟️ Event Search App")
|
| 138 |
+
|
| 139 |
+
st.write("Find events based on your interests!")
|
| 140 |
+
|
| 141 |
+
query = st.text_input("🔎 Enter your search query:")
|
| 142 |
+
if query:
|
| 143 |
+
results = evaluator.evaluate_query(query)
|
| 144 |
+
|
| 145 |
+
if results:
|
| 146 |
+
df = pd.DataFrame(results)
|
| 147 |
+
st.dataframe(df) # Display results as a formatted table
|
| 148 |
+
else:
|
| 149 |
+
st.warning("No results found.")
|