Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from eventbrite_scrapper import Eventbrite
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import numpy as np
|
7 |
+
from datetime import datetime
|
8 |
+
from dataclasses import dataclass, field, replace
|
9 |
+
from typing import List, Any
|
10 |
+
|
11 |
+
# Dataclasses for event structure
|
12 |
+
@dataclass(frozen=True)
|
13 |
+
class EventAddress:
|
14 |
+
latitude: float = None
|
15 |
+
longitude: float = None
|
16 |
+
region: str = None
|
17 |
+
postal_code: str = None
|
18 |
+
address_1: str = None
|
19 |
+
|
20 |
+
@dataclass(frozen=True)
|
21 |
+
class EventVenue:
|
22 |
+
id: str = None
|
23 |
+
name: str = None
|
24 |
+
url: str = None
|
25 |
+
address: EventAddress = field(default_factory=lambda: EventAddress())
|
26 |
+
|
27 |
+
@dataclass(frozen=True)
|
28 |
+
class EventImage:
|
29 |
+
url: str = None
|
30 |
+
|
31 |
+
@dataclass(frozen=True)
|
32 |
+
class EventTag:
|
33 |
+
text: str = None
|
34 |
+
|
35 |
+
@dataclass(frozen=True)
|
36 |
+
class Event:
|
37 |
+
id: str = None
|
38 |
+
name: str = None
|
39 |
+
url: str = None
|
40 |
+
is_online_event: bool = False
|
41 |
+
short_description: str = None
|
42 |
+
published_datetime: datetime = None
|
43 |
+
start_datetime: datetime = None
|
44 |
+
end_datetime: datetime = None
|
45 |
+
timezone: str = None
|
46 |
+
hide_start_date: bool = False
|
47 |
+
hide_end_date: bool = False
|
48 |
+
parent_event_url: str = None
|
49 |
+
series_id: str = None
|
50 |
+
primary_venue: EventVenue = field(default_factory=lambda: EventVenue())
|
51 |
+
tickets_url: str = None
|
52 |
+
checkout_flow: str = None
|
53 |
+
language: str = None
|
54 |
+
image: EventImage = field(default_factory=lambda: EventImage())
|
55 |
+
tags_categories: tuple = field(default_factory=tuple)
|
56 |
+
tags_formats: tuple = field(default_factory=tuple)
|
57 |
+
tags_by_organizer: tuple = field(default_factory=tuple)
|
58 |
+
|
59 |
+
def __hash__(self):
|
60 |
+
return hash(self.id) if self.id else hash((self.name, self.is_online_event, self.start_datetime, self.primary_venue.name))
|
61 |
+
|
62 |
+
# Event Retrieval Pipeline
|
63 |
+
class EventbriteRAGPipeline:
|
64 |
+
def __init__(self, events: List[Event], embedding_model: str = 'all-MiniLM-L6-v2'):
|
65 |
+
self.events = [
|
66 |
+
replace(
|
67 |
+
event,
|
68 |
+
tags_categories=tuple(event.tags_categories),
|
69 |
+
tags_formats=tuple(event.tags_formats),
|
70 |
+
tags_by_organizer=tuple(event.tags_by_organizer),
|
71 |
+
)
|
72 |
+
for event in events
|
73 |
+
]
|
74 |
+
self.model = SentenceTransformer(embedding_model)
|
75 |
+
self.event_embeddings = self._compute_embeddings()
|
76 |
+
|
77 |
+
def _compute_embeddings(self) -> List[np.ndarray]:
|
78 |
+
def event_to_text(event: Event) -> str:
|
79 |
+
text_parts = [
|
80 |
+
event.name or '',
|
81 |
+
event.short_description or '',
|
82 |
+
' '.join(tag.text for tag in event.tags_categories),
|
83 |
+
' '.join(tag.text for tag in event.tags_formats),
|
84 |
+
' '.join(tag.text for tag in event.tags_by_organizer),
|
85 |
+
event.primary_venue.name or '',
|
86 |
+
event.primary_venue.address.region or '',
|
87 |
+
event.language or ''
|
88 |
+
]
|
89 |
+
return ' '.join(filter(bool, text_parts))
|
90 |
+
|
91 |
+
return self.model.encode([event_to_text(event) for event in self.events])
|
92 |
+
|
93 |
+
def query_events(self, query: str, top_k: int = 5) -> List[Event]:
|
94 |
+
query_embedding = self.model.encode(query).reshape(1, -1)
|
95 |
+
similarities = cosine_similarity(query_embedding, self.event_embeddings)[0]
|
96 |
+
top_indices = similarities.argsort()[-top_k:][::-1]
|
97 |
+
return [self.events[idx] for idx in top_indices]
|
98 |
+
|
99 |
+
# Event Evaluator
|
100 |
+
class EventEvaluator:
|
101 |
+
def __init__(self, pipeline):
|
102 |
+
self.pipeline = pipeline
|
103 |
+
|
104 |
+
def evaluate_query(self, query):
|
105 |
+
"""Evaluate a single query and return results."""
|
106 |
+
top_events = self.pipeline.query_events(query)
|
107 |
+
results = []
|
108 |
+
for event in top_events:
|
109 |
+
result = {
|
110 |
+
"Event Name": event.name,
|
111 |
+
"Online Event": event.is_online_event,
|
112 |
+
"Start Time": event.start_datetime,
|
113 |
+
"Venue Address": event.primary_venue.address.address_1,
|
114 |
+
"Venue Name": event.primary_venue.name,
|
115 |
+
"Description": event.short_description,
|
116 |
+
"Tickets URL": event.tickets_url,
|
117 |
+
"Language": event.language,
|
118 |
+
"Categories": [tag.text for tag in event.tags_categories],
|
119 |
+
}
|
120 |
+
results.append(result)
|
121 |
+
return results
|
122 |
+
|
123 |
+
# Fetch events from Eventbrite API
|
124 |
+
client = Eventbrite()
|
125 |
+
events = client.search_events.get_results(
|
126 |
+
region="ca--los-angeles",
|
127 |
+
dt_start="2024-11-28",
|
128 |
+
dt_end="2024-12-25",
|
129 |
+
max_pages=4,
|
130 |
+
)
|
131 |
+
|
132 |
+
# Initialize pipeline and evaluator
|
133 |
+
rag_pipeline = EventbriteRAGPipeline(events)
|
134 |
+
evaluator = EventEvaluator(rag_pipeline)
|
135 |
+
|
136 |
+
# Streamlit UI
|
137 |
+
st.title("🎟️ Event Search App")
|
138 |
+
|
139 |
+
st.write("Find events based on your interests!")
|
140 |
+
|
141 |
+
query = st.text_input("🔎 Enter your search query:")
|
142 |
+
if query:
|
143 |
+
results = evaluator.evaluate_query(query)
|
144 |
+
|
145 |
+
if results:
|
146 |
+
df = pd.DataFrame(results)
|
147 |
+
st.dataframe(df) # Display results as a formatted table
|
148 |
+
else:
|
149 |
+
st.warning("No results found.")
|