Spaces:
Paused
Paused
| import os | |
| import threading | |
| import traceback | |
| from aiohttp import web | |
| import impact | |
| import server | |
| import folder_paths | |
| import torchvision | |
| import impact.core as core | |
| import impact.impact_pack as impact_pack | |
| from impact.utils import to_tensor | |
| from segment_anything import SamPredictor, sam_model_registry | |
| import numpy as np | |
| import nodes | |
| from PIL import Image | |
| import io | |
| import impact.wildcards as wildcards | |
| import comfy | |
| from io import BytesIO | |
| import random | |
| async def upload_image(request): | |
| upload_dir = folder_paths.get_temp_directory() | |
| if not os.path.exists(upload_dir): | |
| os.makedirs(upload_dir) | |
| post = await request.post() | |
| image = post.get("image") | |
| if image and image.file: | |
| filename = image.filename | |
| if not filename: | |
| return web.Response(status=400) | |
| split = os.path.splitext(filename) | |
| i = 1 | |
| while os.path.exists(os.path.join(upload_dir, filename)): | |
| filename = f"{split[0]} ({i}){split[1]}" | |
| i += 1 | |
| filepath = os.path.join(upload_dir, filename) | |
| with open(filepath, "wb") as f: | |
| f.write(image.file.read()) | |
| return web.json_response({"name": filename}) | |
| else: | |
| return web.Response(status=400) | |
| sam_predictor = None | |
| default_sam_model_name = os.path.join(impact_pack.model_path, "sams", "sam_vit_b_01ec64.pth") | |
| sam_lock = threading.Condition() | |
| last_prepare_data = None | |
| def async_prepare_sam(image_dir, model_name, filename): | |
| with sam_lock: | |
| global sam_predictor | |
| if 'vit_h' in model_name: | |
| model_kind = 'vit_h' | |
| elif 'vit_l' in model_name: | |
| model_kind = 'vit_l' | |
| else: | |
| model_kind = 'vit_b' | |
| sam_model = sam_model_registry[model_kind](checkpoint=model_name) | |
| sam_predictor = SamPredictor(sam_model) | |
| image_path = os.path.join(image_dir, filename) | |
| image = nodes.LoadImage().load_image(image_path)[0] | |
| image = np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) | |
| if impact.config.get_config()['sam_editor_cpu']: | |
| device = 'cpu' | |
| else: | |
| device = comfy.model_management.get_torch_device() | |
| sam_predictor.model.to(device=device) | |
| sam_predictor.set_image(image, "RGB") | |
| sam_predictor.model.cpu() | |
| async def sam_prepare(request): | |
| global sam_predictor | |
| global last_prepare_data | |
| data = await request.json() | |
| with sam_lock: | |
| if last_prepare_data is not None and last_prepare_data == data: | |
| # already loaded: skip -- prevent redundant loading | |
| return web.Response(status=200) | |
| last_prepare_data = data | |
| model_name = 'sam_vit_b_01ec64.pth' | |
| if data['sam_model_name'] == 'auto': | |
| model_name = impact.config.get_config()['sam_editor_model'] | |
| model_name = os.path.join(impact_pack.model_path, "sams", model_name) | |
| print(f"[INFO] ComfyUI-Impact-Pack: Loading SAM model '{impact_pack.model_path}'") | |
| filename, image_dir = folder_paths.annotated_filepath(data["filename"]) | |
| if image_dir is None: | |
| typ = data['type'] if data['type'] != '' else 'output' | |
| image_dir = folder_paths.get_directory_by_type(typ) | |
| if data['subfolder'] is not None and data['subfolder'] != '': | |
| image_dir += f"/{data['subfolder']}" | |
| if image_dir is None: | |
| return web.Response(status=400) | |
| thread = threading.Thread(target=async_prepare_sam, args=(image_dir, model_name, filename,)) | |
| thread.start() | |
| print(f"[INFO] ComfyUI-Impact-Pack: SAM model loaded. ") | |
| async def release_sam(request): | |
| global sam_predictor | |
| with sam_lock: | |
| del sam_predictor | |
| sam_predictor = None | |
| print(f"[INFO] ComfyUI-Impact-Pack: unloading SAM model") | |
| async def sam_detect(request): | |
| global sam_predictor | |
| with sam_lock: | |
| if sam_predictor is not None: | |
| if impact.config.get_config()['sam_editor_cpu']: | |
| device = 'cpu' | |
| else: | |
| device = comfy.model_management.get_torch_device() | |
| sam_predictor.model.to(device=device) | |
| try: | |
| data = await request.json() | |
| positive_points = data['positive_points'] | |
| negative_points = data['negative_points'] | |
| threshold = data['threshold'] | |
| points = [] | |
| plabs = [] | |
| for p in positive_points: | |
| points.append(p) | |
| plabs.append(1) | |
| for p in negative_points: | |
| points.append(p) | |
| plabs.append(0) | |
| detected_masks = core.sam_predict(sam_predictor, points, plabs, None, threshold) | |
| mask = core.combine_masks2(detected_masks) | |
| if mask is None: | |
| return web.Response(status=400) | |
| image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) | |
| i = 255. * image.cpu().numpy() | |
| img = Image.fromarray(np.clip(i[0], 0, 255).astype(np.uint8)) | |
| img_buffer = io.BytesIO() | |
| img.save(img_buffer, format='png') | |
| headers = {'Content-Type': 'image/png'} | |
| finally: | |
| sam_predictor.model.to(device="cpu") | |
| return web.Response(body=img_buffer.getvalue(), headers=headers) | |
| else: | |
| return web.Response(status=400) | |
| async def wildcards_list(request): | |
| data = {'data': impact.wildcards.get_wildcard_list()} | |
| return web.json_response(data) | |
| async def populate_wildcards(request): | |
| data = await request.json() | |
| populated = wildcards.process(data['text'], data.get('seed', None)) | |
| return web.json_response({"text": populated}) | |
| segs_picker_map = {} | |
| async def segs_picker_count(request): | |
| node_id = request.rel_url.query.get('id', '') | |
| if node_id in segs_picker_map: | |
| res = len(segs_picker_map[node_id]) | |
| return web.Response(status=200, text=str(res)) | |
| return web.Response(status=400) | |
| async def segs_picker(request): | |
| node_id = request.rel_url.query.get('id', '') | |
| idx = int(request.rel_url.query.get('idx', '')) | |
| if node_id in segs_picker_map and idx < len(segs_picker_map[node_id]): | |
| img = to_tensor(segs_picker_map[node_id][idx]).permute(0, 3, 1, 2).squeeze(0) | |
| pil = torchvision.transforms.ToPILImage('RGB')(img) | |
| image_bytes = BytesIO() | |
| pil.save(image_bytes, format="PNG") | |
| image_bytes.seek(0) | |
| return web.Response(status=200, body=image_bytes, content_type='image/png', headers={"Content-Disposition": f"filename={node_id}{idx}.png"}) | |
| return web.Response(status=400) | |
| async def view_validate(request): | |
| if "filename" in request.rel_url.query: | |
| filename = request.rel_url.query["filename"] | |
| subfolder = request.rel_url.query["subfolder"] | |
| filename, base_dir = folder_paths.annotated_filepath(filename) | |
| if filename == '' or filename[0] == '/' or '..' in filename: | |
| return web.Response(status=400) | |
| if base_dir is None: | |
| base_dir = folder_paths.get_input_directory() | |
| file = os.path.join(base_dir, subfolder, filename) | |
| if os.path.isfile(file): | |
| return web.Response(status=200) | |
| return web.Response(status=400) | |
| async def view_validate(request): | |
| if "id" in request.rel_url.query: | |
| pb_id = request.rel_url.query["id"] | |
| if pb_id not in core.preview_bridge_image_id_map: | |
| return web.Response(status=400) | |
| file = core.preview_bridge_image_id_map[pb_id] | |
| if os.path.isfile(file): | |
| return web.Response(status=200) | |
| return web.Response(status=400) | |
| async def set_previewbridge_image(request): | |
| try: | |
| if "filename" in request.rel_url.query: | |
| node_id = request.rel_url.query["node_id"] | |
| filename = request.rel_url.query["filename"] | |
| path_type = request.rel_url.query["type"] | |
| subfolder = request.rel_url.query["subfolder"] | |
| filename, output_dir = folder_paths.annotated_filepath(filename) | |
| if filename == '' or filename[0] == '/' or '..' in filename: | |
| return web.Response(status=400) | |
| if output_dir is None: | |
| if path_type == 'input': | |
| output_dir = folder_paths.get_input_directory() | |
| elif path_type == 'output': | |
| output_dir = folder_paths.get_output_directory() | |
| else: | |
| output_dir = folder_paths.get_temp_directory() | |
| file = os.path.join(output_dir, subfolder, filename) | |
| item = { | |
| 'filename': filename, | |
| 'type': path_type, | |
| 'subfolder': subfolder, | |
| } | |
| pb_id = core.set_previewbridge_image(node_id, file, item) | |
| return web.Response(status=200, text=pb_id) | |
| except Exception: | |
| traceback.print_exc() | |
| return web.Response(status=400) | |
| async def get_previewbridge_image(request): | |
| if "id" in request.rel_url.query: | |
| pb_id = request.rel_url.query["id"] | |
| if pb_id in core.preview_bridge_image_id_map: | |
| _, path_item = core.preview_bridge_image_id_map[pb_id] | |
| return web.json_response(path_item) | |
| return web.Response(status=400) | |
| async def view_previewbridge_image(request): | |
| if "id" in request.rel_url.query: | |
| pb_id = request.rel_url.query["id"] | |
| if pb_id in core.preview_bridge_image_id_map: | |
| file = core.preview_bridge_image_id_map[pb_id] | |
| with Image.open(file) as img: | |
| filename = os.path.basename(file) | |
| return web.FileResponse(file, headers={"Content-Disposition": f"filename=\"{filename}\""}) | |
| return web.Response(status=400) | |
| def onprompt_for_switch(json_data): | |
| inversed_switch_info = {} | |
| onprompt_switch_info = {} | |
| onprompt_cond_branch_info = {} | |
| for k, v in json_data['prompt'].items(): | |
| if 'class_type' not in v: | |
| continue | |
| cls = v['class_type'] | |
| if cls == 'ImpactInversedSwitch': | |
| select_input = v['inputs']['select'] | |
| if isinstance(select_input, list) and len(select_input) == 2: | |
| input_node = json_data['prompt'][select_input[0]] | |
| if input_node['class_type'] == 'ImpactInt' and 'inputs' in input_node and 'value' in input_node['inputs']: | |
| inversed_switch_info[k] = input_node['inputs']['value'] | |
| else: | |
| inversed_switch_info[k] = select_input | |
| elif cls in ['ImpactSwitch', 'LatentSwitch', 'SEGSSwitch', 'ImpactMakeImageList']: | |
| if 'sel_mode' in v['inputs'] and v['inputs']['sel_mode'] and 'select' in v['inputs']: | |
| select_input = v['inputs']['select'] | |
| if isinstance(select_input, list) and len(select_input) == 2: | |
| input_node = json_data['prompt'][select_input[0]] | |
| if input_node['class_type'] == 'ImpactInt' and 'inputs' in input_node and 'value' in input_node['inputs']: | |
| onprompt_switch_info[k] = input_node['inputs']['value'] | |
| if input_node['class_type'] == 'ImpactSwitch' and 'inputs' in input_node and 'select' in input_node['inputs']: | |
| if isinstance(input_node['inputs']['select'], int): | |
| onprompt_switch_info[k] = input_node['inputs']['select'] | |
| else: | |
| print(f"\n##### ##### #####\n[WARN] {cls}: For the 'select' operation, only 'select_index' of the 'ImpactSwitch', which is not an input, or 'ImpactInt' and 'Primitive' are allowed as inputs.\n##### ##### #####\n") | |
| else: | |
| onprompt_switch_info[k] = select_input | |
| elif cls == 'ImpactConditionalBranchSelMode': | |
| if 'sel_mode' in v['inputs'] and v['inputs']['sel_mode'] and 'cond' in v['inputs']: | |
| cond_input = v['inputs']['cond'] | |
| if isinstance(cond_input, list) and len(cond_input) == 2: | |
| input_node = json_data['prompt'][cond_input[0]] | |
| if (input_node['class_type'] == 'ImpactValueReceiver' and 'inputs' in input_node | |
| and 'value' in input_node['inputs'] and 'typ' in input_node['inputs']): | |
| if 'BOOLEAN' == input_node['inputs']['typ']: | |
| try: | |
| onprompt_cond_branch_info[k] = input_node['inputs']['value'].lower() == "true" | |
| except: | |
| pass | |
| else: | |
| onprompt_cond_branch_info[k] = cond_input | |
| for k, v in json_data['prompt'].items(): | |
| disable_targets = set() | |
| for kk, vv in v['inputs'].items(): | |
| if isinstance(vv, list) and len(vv) == 2: | |
| if vv[0] in inversed_switch_info: | |
| if vv[1] + 1 != inversed_switch_info[vv[0]]: | |
| disable_targets.add(kk) | |
| if k in onprompt_switch_info: | |
| selected_slot_name = f"input{onprompt_switch_info[k]}" | |
| for kk, vv in v['inputs'].items(): | |
| if kk != selected_slot_name and kk.startswith('input'): | |
| disable_targets.add(kk) | |
| if k in onprompt_cond_branch_info: | |
| selected_slot_name = "tt_value" if onprompt_cond_branch_info[k] else "ff_value" | |
| for kk, vv in v['inputs'].items(): | |
| if kk in ['tt_value', 'ff_value'] and kk != selected_slot_name: | |
| disable_targets.add(kk) | |
| for kk in disable_targets: | |
| del v['inputs'][kk] | |
| def onprompt_for_pickers(json_data): | |
| detected_pickers = set() | |
| for k, v in json_data['prompt'].items(): | |
| if 'class_type' not in v: | |
| continue | |
| cls = v['class_type'] | |
| if cls == 'ImpactSEGSPicker': | |
| detected_pickers.add(k) | |
| # garbage collection | |
| keys_to_remove = [key for key in segs_picker_map if key not in detected_pickers] | |
| for key in keys_to_remove: | |
| del segs_picker_map[key] | |
| def gc_preview_bridge_cache(json_data): | |
| prompt_keys = json_data['prompt'].keys() | |
| for key in list(core.preview_bridge_cache.keys()): | |
| if key not in prompt_keys: | |
| print(f"key deleted: {key}") | |
| del core.preview_bridge_cache[key] | |
| def workflow_imagereceiver_update(json_data): | |
| prompt = json_data['prompt'] | |
| for v in prompt.values(): | |
| if 'class_type' in v and v['class_type'] == 'ImageReceiver': | |
| if v['inputs']['save_to_workflow']: | |
| v['inputs']['image'] = "#DATA" | |
| def regional_sampler_seed_update(json_data): | |
| prompt = json_data['prompt'] | |
| for k, v in prompt.items(): | |
| if 'class_type' in v and v['class_type'] == 'RegionalSampler': | |
| seed_2nd_mode = v['inputs']['seed_2nd_mode'] | |
| new_seed = None | |
| if seed_2nd_mode == 'increment': | |
| new_seed = v['inputs']['seed_2nd']+1 | |
| if new_seed > 1125899906842624: | |
| new_seed = 0 | |
| elif seed_2nd_mode == 'decrement': | |
| new_seed = v['inputs']['seed_2nd']-1 | |
| if new_seed < 0: | |
| new_seed = 1125899906842624 | |
| elif seed_2nd_mode == 'randomize': | |
| new_seed = random.randint(0, 1125899906842624) | |
| if new_seed is not None: | |
| server.PromptServer.instance.send_sync("impact-node-feedback", {"node_id": k, "widget_name": "seed_2nd", "type": "INT", "value": new_seed}) | |
| def onprompt_populate_wildcards(json_data): | |
| prompt = json_data['prompt'] | |
| updated_widget_values = {} | |
| for k, v in prompt.items(): | |
| if 'class_type' in v and (v['class_type'] == 'ImpactWildcardEncode' or v['class_type'] == 'ImpactWildcardProcessor'): | |
| inputs = v['inputs'] | |
| if inputs['mode'] and isinstance(inputs['populated_text'], str): | |
| if isinstance(inputs['seed'], list): | |
| try: | |
| input_node = prompt[inputs['seed'][0]] | |
| if input_node['class_type'] == 'ImpactInt': | |
| input_seed = int(input_node['inputs']['value']) | |
| if not isinstance(input_seed, int): | |
| continue | |
| if input_node['class_type'] == 'Seed (rgthree)': | |
| input_seed = int(input_node['inputs']['seed']) | |
| if not isinstance(input_seed, int): | |
| continue | |
| else: | |
| print(f"[Impact Pack] Only `ImpactInt`, `Seed (rgthree)` and `Primitive` Node are allowed as the seed for '{v['class_type']}'. It will be ignored. ") | |
| continue | |
| except: | |
| continue | |
| else: | |
| input_seed = int(inputs['seed']) | |
| inputs['populated_text'] = wildcards.process(inputs['wildcard_text'], input_seed) | |
| inputs['mode'] = False | |
| server.PromptServer.instance.send_sync("impact-node-feedback", {"node_id": k, "widget_name": "populated_text", "type": "STRING", "value": inputs['populated_text']}) | |
| updated_widget_values[k] = inputs['populated_text'] | |
| if 'extra_data' in json_data and 'extra_pnginfo' in json_data['extra_data']: | |
| for node in json_data['extra_data']['extra_pnginfo']['workflow']['nodes']: | |
| key = str(node['id']) | |
| if key in updated_widget_values: | |
| node['widgets_values'][1] = updated_widget_values[key] | |
| node['widgets_values'][2] = False | |
| def onprompt_for_remote(json_data): | |
| prompt = json_data['prompt'] | |
| for v in prompt.values(): | |
| if 'class_type' in v: | |
| cls = v['class_type'] | |
| if cls == 'ImpactRemoteBoolean' or cls == 'ImpactRemoteInt': | |
| inputs = v['inputs'] | |
| node_id = str(inputs['node_id']) | |
| if node_id not in prompt: | |
| continue | |
| target_inputs = prompt[node_id]['inputs'] | |
| widget_name = inputs['widget_name'] | |
| if widget_name in target_inputs: | |
| widget_type = None | |
| if cls == 'ImpactRemoteBoolean' and isinstance(target_inputs[widget_name], bool): | |
| widget_type = 'BOOLEAN' | |
| elif cls == 'ImpactRemoteInt' and (isinstance(target_inputs[widget_name], int) or isinstance(target_inputs[widget_name], float)): | |
| widget_type = 'INT' | |
| if widget_type is None: | |
| break | |
| target_inputs[widget_name] = inputs['value'] | |
| server.PromptServer.instance.send_sync("impact-node-feedback", {"node_id": node_id, "widget_name": widget_name, "type": widget_type, "value": inputs['value']}) | |
| def onprompt(json_data): | |
| try: | |
| onprompt_for_remote(json_data) # NOTE: top priority | |
| onprompt_for_switch(json_data) | |
| onprompt_for_pickers(json_data) | |
| onprompt_populate_wildcards(json_data) | |
| gc_preview_bridge_cache(json_data) | |
| workflow_imagereceiver_update(json_data) | |
| regional_sampler_seed_update(json_data) | |
| except Exception as e: | |
| print(f"[WARN] ComfyUI-Impact-Pack: Error on prompt - several features will not work.\n{e}") | |
| return json_data | |
| server.PromptServer.instance.add_on_prompt_handler(onprompt) | |