Spaces:
Sleeping
Sleeping
Vivien
commited on
Commit
·
a55de09
1
Parent(s):
b59b1d0
Switch from ViT-B32 to ViT-B16
Browse files- app.py +58 -32
- data.csv +0 -0
- embeddings.npy +1 -1
- embeddings2.npy +1 -1
app.py
CHANGED
|
@@ -4,21 +4,31 @@ from html import escape
|
|
| 4 |
import os
|
| 5 |
from transformers import CLIPProcessor, CLIPModel
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def load():
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
model, processor, df, embeddings = load()
|
| 20 |
|
| 21 |
-
source = {0:
|
|
|
|
| 22 |
|
| 23 |
def get_html(url_list, height=200):
|
| 24 |
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
|
|
@@ -30,20 +40,32 @@ def get_html(url_list, height=200):
|
|
| 30 |
html += "</div>"
|
| 31 |
return html
|
| 32 |
|
|
|
|
| 33 |
def compute_text_embeddings(list_of_strings):
|
| 34 |
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
|
| 35 |
return model.get_text_features(**inputs)
|
| 36 |
|
|
|
|
| 37 |
st.cache(show_spinner=False)
|
|
|
|
|
|
|
| 38 |
def image_search(query, corpus, n_results=24):
|
| 39 |
text_embeddings = compute_text_embeddings([query]).detach().numpy()
|
| 40 |
-
k = 0 if corpus ==
|
| 41 |
-
results = np.argsort((embeddings[k]@text_embeddings.T)[:, 0])[
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
description =
|
| 47 |
# Semantic image search
|
| 48 |
|
| 49 |
**Enter your query and hit enter**
|
|
@@ -51,10 +73,12 @@ description = '''
|
|
| 51 |
*Built with OpenAI's [CLIP](https://openai.com/blog/clip/) model, 🤗 Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
|
| 52 |
|
| 53 |
*Inspired by [Unsplash Image Search](https://github.com/haltakov/natural-language-image-search) from Vladimir Haltakov and [Alph, The Sacred River](https://github.com/thoppe/alph-the-sacred-river) from Travis Hoppe*
|
| 54 |
-
|
|
|
|
| 55 |
|
| 56 |
def main():
|
| 57 |
-
|
|
|
|
| 58 |
<style>
|
| 59 |
.block-container{
|
| 60 |
max-width: 1200px;
|
|
@@ -83,15 +107,17 @@ def main():
|
|
| 83 |
footer {
|
| 84 |
visibility: hidden;
|
| 85 |
}
|
| 86 |
-
</style>
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
| 4 |
import os
|
| 5 |
from transformers import CLIPProcessor, CLIPModel
|
| 6 |
|
| 7 |
+
|
| 8 |
+
@st.cache(
|
| 9 |
+
show_spinner=False,
|
| 10 |
+
hash_funcs={
|
| 11 |
+
CLIPModel: lambda _: None,
|
| 12 |
+
CLIPProcessor: lambda _: None,
|
| 13 |
+
dict: lambda _: None,
|
| 14 |
+
},
|
| 15 |
+
)
|
| 16 |
def load():
|
| 17 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
|
| 18 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
| 19 |
+
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
|
| 20 |
+
embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
|
| 21 |
+
for k in [0, 1]:
|
| 22 |
+
embeddings[k] = np.divide(
|
| 23 |
+
embeddings[k], np.sqrt(np.sum(embeddings[k] ** 2, axis=1, keepdims=True))
|
| 24 |
+
)
|
| 25 |
+
return model, processor, df, embeddings
|
| 26 |
+
|
| 27 |
+
|
| 28 |
model, processor, df, embeddings = load()
|
| 29 |
|
| 30 |
+
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
|
| 31 |
+
|
| 32 |
|
| 33 |
def get_html(url_list, height=200):
|
| 34 |
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
|
|
|
|
| 40 |
html += "</div>"
|
| 41 |
return html
|
| 42 |
|
| 43 |
+
|
| 44 |
def compute_text_embeddings(list_of_strings):
|
| 45 |
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
|
| 46 |
return model.get_text_features(**inputs)
|
| 47 |
|
| 48 |
+
|
| 49 |
st.cache(show_spinner=False)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
def image_search(query, corpus, n_results=24):
|
| 53 |
text_embeddings = compute_text_embeddings([query]).detach().numpy()
|
| 54 |
+
k = 0 if corpus == "Unsplash" else 1
|
| 55 |
+
results = np.argsort((embeddings[k] @ text_embeddings.T)[:, 0])[
|
| 56 |
+
-1 : -n_results - 1 : -1
|
| 57 |
+
]
|
| 58 |
+
return [
|
| 59 |
+
(
|
| 60 |
+
df[k].iloc[i]["path"],
|
| 61 |
+
df[k].iloc[i]["tooltip"] + source[k],
|
| 62 |
+
df[k].iloc[i]["link"],
|
| 63 |
+
)
|
| 64 |
+
for i in results
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
|
| 68 |
+
description = """
|
| 69 |
# Semantic image search
|
| 70 |
|
| 71 |
**Enter your query and hit enter**
|
|
|
|
| 73 |
*Built with OpenAI's [CLIP](https://openai.com/blog/clip/) model, 🤗 Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
|
| 74 |
|
| 75 |
*Inspired by [Unsplash Image Search](https://github.com/haltakov/natural-language-image-search) from Vladimir Haltakov and [Alph, The Sacred River](https://github.com/thoppe/alph-the-sacred-river) from Travis Hoppe*
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
|
| 79 |
def main():
|
| 80 |
+
st.markdown(
|
| 81 |
+
"""
|
| 82 |
<style>
|
| 83 |
.block-container{
|
| 84 |
max-width: 1200px;
|
|
|
|
| 107 |
footer {
|
| 108 |
visibility: hidden;
|
| 109 |
}
|
| 110 |
+
</style>""",
|
| 111 |
+
unsafe_allow_html=True,
|
| 112 |
+
)
|
| 113 |
+
st.sidebar.markdown(description)
|
| 114 |
+
_, c, _ = st.columns((1, 3, 1))
|
| 115 |
+
query = c.text_input("", value="clouds at sunset")
|
| 116 |
+
corpus = st.radio("", ["Unsplash", "Movies"])
|
| 117 |
+
if len(query) > 0:
|
| 118 |
+
results = image_search(query, corpus)
|
| 119 |
+
st.markdown(get_html(results), unsafe_allow_html=True)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
if __name__ == "__main__":
|
| 123 |
+
main()
|
data.csv
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
embeddings.npy
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 51200128
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:125430e11a4a415ec0c0fc5339f97544f0447e4b0a24c20f2e59f8852e706afc
|
| 3 |
size 51200128
|
embeddings2.npy
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 16732288
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:153cf3fae2385d51fe8729d3a1c059f611ca47a3fc501049708114d1bbf79049
|
| 3 |
size 16732288
|