Spaces:
Sleeping
Sleeping
Commit
·
5630c13
1
Parent(s):
339e2ea
- Dockerfile +6 -9
- app.py +40 -32
- requirements.txt +1 -9
Dockerfile
CHANGED
|
@@ -1,21 +1,18 @@
|
|
|
|
|
| 1 |
FROM python:3.9
|
| 2 |
|
| 3 |
-
#
|
| 4 |
-
RUN apt-get update && apt-get install -y ffmpeg libsndfile1
|
| 5 |
-
|
| 6 |
-
# Set the working directory
|
| 7 |
WORKDIR /app
|
| 8 |
|
| 9 |
-
# Copy requirements and install dependencies
|
| 10 |
COPY requirements.txt .
|
| 11 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 12 |
|
| 13 |
-
# Copy the application code
|
| 14 |
COPY . .
|
| 15 |
|
| 16 |
-
# Expose the
|
| 17 |
EXPOSE 7860
|
| 18 |
|
| 19 |
-
# Run the app
|
| 20 |
-
|
| 21 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
| 1 |
+
# Use the official Python image.
|
| 2 |
FROM python:3.9
|
| 3 |
|
| 4 |
+
# Set the working directory.
|
|
|
|
|
|
|
|
|
|
| 5 |
WORKDIR /app
|
| 6 |
|
| 7 |
+
# Copy requirements file and install dependencies.
|
| 8 |
COPY requirements.txt .
|
| 9 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 10 |
|
| 11 |
+
# Copy the application code.
|
| 12 |
COPY . .
|
| 13 |
|
| 14 |
+
# Expose port 7860 for the FastAPI app.
|
| 15 |
EXPOSE 7860
|
| 16 |
|
| 17 |
+
# Run the app using Uvicorn.
|
|
|
|
| 18 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
|
@@ -1,37 +1,49 @@
|
|
| 1 |
from fastapi import FastAPI, File, UploadFile, HTTPException, Form
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
from pydantic import BaseModel
|
| 4 |
-
import
|
| 5 |
import numpy as np
|
| 6 |
import tempfile
|
| 7 |
import os
|
| 8 |
import warnings
|
| 9 |
-
import soundfile as sf
|
| 10 |
-
from pydub import AudioSegment
|
| 11 |
|
| 12 |
-
warnings.filterwarnings("ignore"
|
| 13 |
|
| 14 |
app = FastAPI()
|
| 15 |
|
| 16 |
-
def convert_mp3_to_wav(mp3_path, wav_path):
|
| 17 |
-
# Convert mp3 to wav using pydub and ffmpeg
|
| 18 |
-
audio = AudioSegment.from_mp3(mp3_path)
|
| 19 |
-
audio.export(wav_path, format="wav")
|
| 20 |
-
|
| 21 |
def extract_audio_features(audio_file_path):
|
| 22 |
-
# Load the audio file
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def analyze_voice_stress(audio_file_path):
|
| 34 |
-
f0, energy, speech_rate, mfccs,
|
|
|
|
|
|
|
| 35 |
mean_f0 = np.mean(f0)
|
| 36 |
std_f0 = np.std(f0)
|
| 37 |
mean_energy = np.mean(energy)
|
|
@@ -79,20 +91,17 @@ async def analyze_stress(
|
|
| 79 |
# Handle audio file analysis
|
| 80 |
if file or file_path:
|
| 81 |
if file:
|
| 82 |
-
if not file.filename.endswith(".
|
| 83 |
-
raise HTTPException(status_code=400, detail="Only .
|
| 84 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".
|
| 85 |
temp_file.write(await file.read())
|
| 86 |
-
|
| 87 |
-
temp_wav_path = temp_mp3_path.replace(".mp3", ".wav")
|
| 88 |
-
convert_mp3_to_wav(temp_mp3_path, temp_wav_path)
|
| 89 |
else:
|
| 90 |
-
if not file_path.endswith(".
|
| 91 |
-
raise HTTPException(status_code=400, detail="Only .
|
| 92 |
if not os.path.exists(file_path):
|
| 93 |
raise HTTPException(status_code=400, detail="File path does not exist.")
|
| 94 |
-
temp_wav_path = file_path
|
| 95 |
-
convert_mp3_to_wav(file_path, temp_wav_path)
|
| 96 |
|
| 97 |
try:
|
| 98 |
result = analyze_voice_stress(temp_wav_path)
|
|
@@ -102,7 +111,6 @@ async def analyze_stress(
|
|
| 102 |
finally:
|
| 103 |
# Clean up temporary files
|
| 104 |
if file:
|
| 105 |
-
os.remove(temp_mp3_path)
|
| 106 |
os.remove(temp_wav_path)
|
| 107 |
|
| 108 |
# Handle text analysis
|
|
@@ -112,5 +120,5 @@ async def analyze_stress(
|
|
| 112 |
|
| 113 |
if __name__ == "__main__":
|
| 114 |
import uvicorn
|
| 115 |
-
port = int(os.getenv("PORT", 7860)) # Use the PORT environment variable
|
| 116 |
uvicorn.run("app:app", host="0.0.0.0", port=port, reload=True)
|
|
|
|
| 1 |
from fastapi import FastAPI, File, UploadFile, HTTPException, Form
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
from pydantic import BaseModel
|
| 4 |
+
import torchaudio
|
| 5 |
import numpy as np
|
| 6 |
import tempfile
|
| 7 |
import os
|
| 8 |
import warnings
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
warnings.filterwarnings("ignore")
|
| 11 |
|
| 12 |
app = FastAPI()
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def extract_audio_features(audio_file_path):
|
| 15 |
+
# Load the audio file using torchaudio
|
| 16 |
+
waveform, sample_rate = torchaudio.load(audio_file_path)
|
| 17 |
+
|
| 18 |
+
# Ensure waveform is mono by averaging channels if necessary
|
| 19 |
+
if waveform.shape[0] > 1:
|
| 20 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
| 21 |
+
|
| 22 |
+
waveform = waveform.squeeze() # Remove channel dimension if it's 1
|
| 23 |
+
|
| 24 |
+
# Extract pitch (fundamental frequency)
|
| 25 |
+
pitch_frequencies, voiced_flags, _ = torchaudio.functional.detect_pitch_frequency(
|
| 26 |
+
waveform, sample_rate, frame_time=0.01, win_length=1024
|
| 27 |
+
)
|
| 28 |
+
f0 = pitch_frequencies[voiced_flags > 0]
|
| 29 |
+
|
| 30 |
+
# Extract energy
|
| 31 |
+
energy = waveform.pow(2).numpy()
|
| 32 |
+
|
| 33 |
+
# Extract MFCCs
|
| 34 |
+
mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate, n_mfcc=13)
|
| 35 |
+
mfccs = mfcc_transform(waveform.unsqueeze(0)).squeeze(0).numpy()
|
| 36 |
+
|
| 37 |
+
# Estimate speech rate (simplified)
|
| 38 |
+
tempo = torchaudio.functional.estimate_tempo(waveform, sample_rate)
|
| 39 |
+
speech_rate = tempo / 60 if tempo is not None else 0
|
| 40 |
+
|
| 41 |
+
return f0.numpy(), energy, speech_rate, mfccs, waveform.numpy(), sample_rate
|
| 42 |
|
| 43 |
def analyze_voice_stress(audio_file_path):
|
| 44 |
+
f0, energy, speech_rate, mfccs, waveform, sample_rate = extract_audio_features(audio_file_path)
|
| 45 |
+
if len(f0) == 0:
|
| 46 |
+
raise ValueError("Could not extract fundamental frequency from the audio.")
|
| 47 |
mean_f0 = np.mean(f0)
|
| 48 |
std_f0 = np.std(f0)
|
| 49 |
mean_energy = np.mean(energy)
|
|
|
|
| 91 |
# Handle audio file analysis
|
| 92 |
if file or file_path:
|
| 93 |
if file:
|
| 94 |
+
if not file.filename.endswith(".wav"):
|
| 95 |
+
raise HTTPException(status_code=400, detail="Only .wav files are supported.")
|
| 96 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
| 97 |
temp_file.write(await file.read())
|
| 98 |
+
temp_wav_path = temp_file.name
|
|
|
|
|
|
|
| 99 |
else:
|
| 100 |
+
if not file_path.endswith(".wav"):
|
| 101 |
+
raise HTTPException(status_code=400, detail="Only .wav files are supported.")
|
| 102 |
if not os.path.exists(file_path):
|
| 103 |
raise HTTPException(status_code=400, detail="File path does not exist.")
|
| 104 |
+
temp_wav_path = file_path
|
|
|
|
| 105 |
|
| 106 |
try:
|
| 107 |
result = analyze_voice_stress(temp_wav_path)
|
|
|
|
| 111 |
finally:
|
| 112 |
# Clean up temporary files
|
| 113 |
if file:
|
|
|
|
| 114 |
os.remove(temp_wav_path)
|
| 115 |
|
| 116 |
# Handle text analysis
|
|
|
|
| 120 |
|
| 121 |
if __name__ == "__main__":
|
| 122 |
import uvicorn
|
| 123 |
+
port = int(os.getenv("PORT", 7860)) # Use the PORT environment variable if needed
|
| 124 |
uvicorn.run("app:app", host="0.0.0.0", port=port, reload=True)
|
requirements.txt
CHANGED
|
@@ -1,13 +1,5 @@
|
|
| 1 |
fastapi
|
| 2 |
uvicorn
|
| 3 |
-
|
| 4 |
numpy
|
| 5 |
pydantic
|
| 6 |
-
soundfile
|
| 7 |
-
pydub
|
| 8 |
-
ffmpeg-python
|
| 9 |
-
python-multipart
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 1 |
fastapi
|
| 2 |
uvicorn
|
| 3 |
+
torchaudio
|
| 4 |
numpy
|
| 5 |
pydantic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|