File size: 5,701 Bytes
18c46ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import cv2
import numpy as np
import torch
from PIL import Image
import mediapipe as mp
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
from app.face_utils import get_box, display_info
from app.config import config_data
from app.__plot import statistics_plot
from .au_processing import features_to_au_intensities, au_statistics_plot
from pytorch_grad_cam.utils.image import show_cam_on_image

mp_face_mesh = mp.solutions.face_mesh

def preprocess_video_and_predict(video_path):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print(f"Error opening video file: {video_path}")
        return None, None, None, None, None

    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    if fps <= 0 or fps != fps:  # Handle NaN fps
        fps = 30  # Default FPS

    # Paths to save processed videos
    path_save_video_face = 'result_face.mp4'
    path_save_video_hm = 'result_hm.mp4'

    # Video writers
    vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
    vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    lstm_features = []
    count_frame = 1
    count_face = 0
    probs = []
    frames = []
    au_intensities_list = []
    last_output = None
    last_heatmap = None
    last_au_intensities = None
    cur_face = None

    with mp_face_mesh.FaceMesh(
            max_num_faces=1,
            refine_landmarks=False,
            min_detection_confidence=0.5,
            min_tracking_confidence=0.5) as face_mesh:

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            results = face_mesh.process(frame_rgb)

            if results.multi_face_landmarks:
                for face_landmarks in results.multi_face_landmarks:
                    startX, startY, endX, endY = get_box(face_landmarks, width, height)
                    cur_face = frame_rgb[startY:endY, startX:endX]

                    if count_face % config_data.FRAME_DOWNSAMPLING == 0:
                        cur_face_pil = Image.fromarray(cur_face)
                        cur_face_processed = pth_processing(cur_face_pil)

                        with torch.no_grad():
                            features = torch.nn.functional.relu(
                                pth_model_static.extract_features(cur_face_processed)
                            ).cpu().numpy()
                            au_intensities = features_to_au_intensities(
                                pth_model_static(cur_face_processed)
                            )

                        # Generate heatmap
                        grayscale_cam = cam(input_tensor=cur_face_processed)[0, :]
                        cur_face_resized = cv2.resize(cur_face, (224, 224), interpolation=cv2.INTER_AREA)
                        cur_face_normalized = np.float32(cur_face_resized) / 255
                        heatmap = show_cam_on_image(cur_face_normalized, grayscale_cam, use_rgb=False)

                        last_heatmap = heatmap
                        last_au_intensities = au_intensities

                        if not lstm_features:
                            lstm_features = [features] * 10
                        else:
                            lstm_features = lstm_features[1:] + [features]

                        lstm_input = torch.from_numpy(np.vstack(lstm_features)).unsqueeze(0)
                        with torch.no_grad():
                            output = pth_model_dynamic(lstm_input).cpu().numpy()
                        last_output = output

                        if count_face == 0:
                            count_face += 1

                    else:
                        if last_output is not None:
                            output = last_output
                            heatmap = last_heatmap
                            au_intensities = last_au_intensities
                        else:
                            output = np.full((1, 7), np.nan)
                            au_intensities = np.full(24, np.nan)

                    probs.append(output[0])
                    frames.append(count_frame)
                    au_intensities_list.append(au_intensities)
            else:
                if last_output is not None:
                    lstm_features = []
                    probs.append(np.full(7, np.nan))
                    frames.append(count_frame)
                    au_intensities_list.append(np.full(24, np.nan))

            if cur_face is not None:
                heatmap_frame = display_info(heatmap, f'Frame: {count_frame}', box_scale=0.3)
                cur_face_bgr = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
                cur_face_resized = cv2.resize(cur_face_bgr, (224, 224), interpolation=cv2.INTER_AREA)
                cur_face_annotated = display_info(cur_face_resized, f'Frame: {count_frame}', box_scale=0.3)
                vid_writer_face.write(cur_face_annotated)
                vid_writer_hm.write(heatmap_frame)

            count_frame += 1
            if count_face != 0:
                count_face += 1

        cap.release()
        vid_writer_face.release()
        vid_writer_hm.release()

        stat = statistics_plot(frames, probs)
        au_stat = au_statistics_plot(frames, au_intensities_list)

        if not stat or not au_stat:
            return None, None, None, None, None

    return video_path, path_save_video_face, path_save_video_hm, stat, au_stat