Spaces:
Build error
Build error
File size: 2,853 Bytes
18c46ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# main.py
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import librosa
import numpy as np
import tempfile
import os
import warnings
import matplotlib.pyplot as plt
warnings.filterwarnings("ignore", category=UserWarning, module='librosa')
app = FastAPI()
def extract_audio_features(audio_file_path):
# Load the audio file and extract features
y, sr = librosa.load(audio_file_path, sr=None)
f0, voiced_flag, voiced_probs = librosa.pyin(y, fmin=75, fmax=600)
f0 = f0[~np.isnan(f0)]
energy = librosa.feature.rms(y=y)[0]
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
tempo, _ = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
speech_rate = tempo / 60
return f0, energy, speech_rate, mfccs, y, sr
def analyze_voice_stress(audio_file_path):
f0, energy, speech_rate, mfccs, y, sr = extract_audio_features(audio_file_path)
mean_f0 = np.mean(f0)
std_f0 = np.std(f0)
mean_energy = np.mean(energy)
std_energy = np.std(energy)
gender = 'male' if mean_f0 < 165 else 'female'
norm_mean_f0 = 110 if gender == 'male' else 220
norm_std_f0 = 20
norm_mean_energy = 0.02
norm_std_energy = 0.005
norm_speech_rate = 4.4
norm_std_speech_rate = 0.5
z_f0 = (mean_f0 - norm_mean_f0) / norm_std_f0
z_energy = (mean_energy - norm_mean_energy) / norm_std_energy
z_speech_rate = (speech_rate - norm_speech_rate) / norm_std_speech_rate
stress_score = (0.4 * z_f0) + (0.4 * z_speech_rate) + (0.2 * z_energy)
stress_level = float(1 / (1 + np.exp(-stress_score)) * 100)
categories = ["Very Low Stress", "Low Stress", "Moderate Stress", "High Stress", "Very High Stress"]
category_idx = min(int(stress_level / 20), 4)
stress_category = categories[category_idx]
return {"stress_level": stress_level, "category": stress_category, "gender": gender}
class StressResponse(BaseModel):
stress_level: float
category: str
gender: str
@app.post("/analyze-stress/", response_model=StressResponse)
async def analyze_stress(file: UploadFile = File(...)):
if not file.filename.endswith(".wav"):
raise HTTPException(status_code=400, detail="Only .wav files are supported.")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
temp_file.write(await file.read())
temp_file_path = temp_file.name
try:
result = analyze_voice_stress(temp_file_path)
return JSONResponse(content=result)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
finally:
os.remove(temp_file_path)
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=True) |