Spaces:
Build error
Build error
File size: 7,492 Bytes
18c46ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
import cv2
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import butter, filtfilt, find_peaks
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_stress_level(rmssd, hr_mean, hr_std):
"""
Calculate stress level based on HRV parameters.
Returns both numerical value (0-100) and category.
"""
# RMSSD factor (lower RMSSD = higher stress)
rmssd_normalized = max(0, min(100, (150 - rmssd) / 1.5))
# Heart rate factor (higher HR = higher stress)
hr_factor = max(0, min(100, (hr_mean - 60) * 2))
# Heart rate variability factor (lower variability = higher stress)
hr_variability_factor = max(0, min(100, hr_std * 5))
# Combine factors with weights
stress_value = (0.4 * rmssd_normalized +
0.4 * hr_factor +
0.2 * hr_variability_factor)
# Determine category
if stress_value < 30:
category = "Low"
elif stress_value < 60:
category = "Moderate"
else:
category = "High"
return stress_value, category
def get_anxiety_level(value):
"""Get anxiety level category based on value."""
if value < 30:
return "Low"
elif value < 70:
return "Moderate"
else:
return "High"
def calculate_anxiety_index(heart_rate, hrv):
"""Calculate anxiety index based on heart rate and HRV."""
if len(heart_rate) < 2:
return 0
hr_mean = np.mean(heart_rate)
hr_std = np.std(heart_rate)
# Combine factors indicating anxiety
hr_factor = min(100, max(0, (hr_mean - 60) / 0.4))
variability_factor = min(100, (hr_std / 20) * 100)
hrv_factor = min(100, max(0, (100 - hrv) / 1))
anxiety_index = (hr_factor + variability_factor + hrv_factor) / 3
return anxiety_index
def process_video_for_hrv(video_path):
"""Process video and extract HRV metrics focusing on stress and anxiety."""
if not video_path:
return None, None
try:
cap = cv2.VideoCapture(video_path)
ppg_signal = []
fps = cap.get(cv2.CAP_PROP_FPS)
last_frame = None
while True:
ret, frame = cap.read()
if not ret:
break
# Extract green channel for PPG
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
green_channel = frame_rgb[:, :, 1]
ppg_value = np.mean(green_channel)
ppg_signal.append(ppg_value)
# Store last frame for display
last_frame = cv2.resize(frame_rgb, (320, 240))
cap.release()
if not ppg_signal or last_frame is None:
return None, None
# Process PPG signal
ppg_signal = np.array(ppg_signal)
filtered_signal = filtfilt(*butter(2, [0.5, 5], fs=fps, btype='band'), ppg_signal)
# Find peaks for heart rate calculation
peaks, _ = find_peaks(filtered_signal, distance=int(0.5 * fps))
if len(peaks) < 2:
return None, None
# Calculate basic metrics
rr_intervals = np.diff(peaks) / fps * 1000
heart_rate = 60 * fps / np.diff(peaks)
hrv_rmssd = np.sqrt(np.mean(np.diff(rr_intervals) ** 2))
# Calculate stress and anxiety indices
hr_mean = np.mean(heart_rate)
hr_std = np.std(heart_rate)
stress_value, stress_category = get_stress_level(hrv_rmssd, hr_mean, hr_std)
anxiety_idx = calculate_anxiety_index(heart_rate, hrv_rmssd)
# Create visualization
fig = plt.figure(figsize=(12, 10))
# Plot 1: Stress and Anxiety Levels (top)
ax1 = plt.subplot(211)
metrics = ['Stress Level', 'Anxiety Level']
values = [stress_value, anxiety_idx]
colors = ['#FF6B6B', '#4D96FF'] # Warm red for stress, cool blue for anxiety
bars = ax1.bar(metrics, values, color=colors)
ax1.set_ylim(0, 100)
ax1.set_title('Stress and Anxiety Analysis', pad=20)
ax1.set_ylabel('Level (%)')
# Add value labels and status
for bar, val, metric in zip(bars, values, metrics):
height = val
status = stress_category if metric == 'Stress Level' else get_anxiety_level(val)
ax1.text(bar.get_x() + bar.get_width()/2., height + 1,
f'{val:.1f}%\n{status}',
ha='center', va='bottom')
# Plot 2: Heart Rate and HRV Trends (bottom)
ax2 = plt.subplot(212)
time = np.linspace(0, len(heart_rate), len(heart_rate))
ax2.plot(time, heart_rate, color='#2ECC71', label='Heart Rate', linewidth=2)
ax2.set_title('Heart Rate Variation')
ax2.set_xlabel('Beat Number')
ax2.set_ylabel('Heart Rate (BPM)')
ax2.grid(True, alpha=0.3)
# Add metrics information with color-coded status
def get_status_color(category):
return {
'Low': '#2ECC71', # Green
'Moderate': '#F1C40F', # Yellow
'High': '#E74C3C' # Red
}.get(category, 'black')
info_text = (
f'HRV (RMSSD): {hrv_rmssd:.1f} ms\n'
f'Average HR: {hr_mean:.1f} BPM\n'
f'Recording: {len(ppg_signal)/fps:.1f} s\n\n'
f'Stress Status: {stress_category}\n'
f'Anxiety Status: {get_anxiety_level(anxiety_idx)}'
)
# Add metrics box with gradient background
bbox_props = dict(
boxstyle='round,pad=0.5',
facecolor='white',
alpha=0.8,
edgecolor='gray'
)
ax2.text(0.02, 0.98, info_text,
transform=ax2.transAxes,
verticalalignment='top',
bbox=bbox_props,
fontsize=10)
plt.tight_layout()
return last_frame, fig
except Exception as e:
logger.error(f"Error processing video: {str(e)}")
return None, None
def create_heart_rate_variability_tab():
with gr.Row():
with gr.Column(scale=1):
input_video = gr.Video()
gr.Markdown("""
### Stress and Anxiety Analysis
**Measurements:**
- Stress Level (0-100%)
- Anxiety Level (0-100%)
- Heart Rate Variability (HRV)
**Status Levels:**
🟢 Low: Normal state
🟡 Moderate: Elevated levels
🔴 High: Significant elevation
**For best results:**
1. Ensure good lighting
2. Minimize movement
3. Face the camera directly
""")
gr.Examples(["./assets/videos/fitness.mp4", "./assets/videos/vladirmir.mp4", "./assets/videos/lula.mp4"], inputs=[input_video])
with gr.Column(scale=2):
output_frame = gr.Image(label="Face Detection", height=240)
hrv_plot = gr.Plot(label="Stress and Anxiety Analysis")
# Automatically trigger analysis on video upload
input_video.change(
fn=process_video_for_hrv,
inputs=[input_video],
outputs=[output_frame, hrv_plot]
)
return input_video, output_frame, hrv_plot |