Spaces:
Build error
Build error
File size: 7,689 Bytes
18c46ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# tabs/speech_emotion_recognition.py
import gradio as gr
import numpy as np
import librosa
import librosa.display
import matplotlib.pyplot as plt
from transformers import pipeline
import torch
import tempfile
import warnings
import os
# Suppress specific warnings from transformers if needed
warnings.filterwarnings("ignore", category=UserWarning, module='transformers')
# Determine the device
def get_device():
if torch.backends.mps.is_available():
device = torch.device("mps")
print("Using MPS device for inference.")
elif torch.cuda.is_available():
device = torch.device("cuda")
print("Using CUDA device for inference.")
else:
device = torch.device("cpu")
print("Using CPU for inference.")
return device
device = get_device()
# Initialize the pipelines with the specified device
try:
emotion_model = pipeline(
"audio-classification",
model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition",
device=0 if device.type == "cuda" else ("mps" if device.type == "mps" else -1)
)
print("Emotion model loaded successfully.")
except Exception as e:
print(f"Error loading emotion model: {e}")
emotion_model = None
try:
transcription_model = pipeline(
"automatic-speech-recognition",
model="facebook/wav2vec2-base-960h",
device=0 if device.type == "cuda" else ("mps" if device.type == "mps" else -1)
)
print("Transcription model loaded successfully.")
except Exception as e:
print(f"Error loading transcription model: {e}")
transcription_model = None
# Emotion Mapping
emotion_mapping = {
"angry": (0.8, 0.8, -0.5),
"happy": (0.6, 0.6, 0.8),
"sad": (-0.6, -0.4, -0.6),
"neutral": (0, 0, 0),
"fear": (0.3, -0.3, -0.7),
"surprise": (0.4, 0.2, 0.2),
"disgust": (0.2, 0.5, -0.6),
"calm": (-0.2, 0.1, 0.3),
"excited": (0.7, 0.5, 0.7),
"frustrated": (0.6, 0.5, -0.4)
}
def process_audio_emotion(audio_file):
"""
Processes the input audio file to perform transcription and emotion recognition.
Generates waveform and mel spectrogram plots.
Returns:
A tuple containing:
- Transcription (str)
- Emotion (str)
- Confidence (%) (float)
- Arousal (float)
- Dominance (float)
- Valence (float)
- Waveform Plot (str: filepath)
- Mel Spectrogram Plot (str: filepath)
"""
if not audio_file:
return (
"No audio file provided.", # Transcription (textbox)
None, # Emotion (textbox)
None, # Confidence (%) (number)
None, # Arousal (number)
None, # Dominance (number)
None, # Valence (number)
None, # Waveform Plot (image)
None # Mel Spectrogram Plot (image)
)
try:
y, sr = librosa.load(audio_file, sr=None)
# Transcription
if transcription_model:
transcription_result = transcription_model(audio_file)
transcription = transcription_result.get("text", "N/A")
else:
transcription = "Transcription model not loaded."
# Emotion Recognition
if emotion_model:
emotion_results = emotion_model(audio_file)
if emotion_results:
emotion_result = emotion_results[0]
emotion = emotion_result.get("label", "Unknown").lower()
confidence = emotion_result.get("score", 0.0) * 100 # Convert to percentage
arousal, dominance, valence = emotion_mapping.get(emotion, (0.0, 0.0, 0.0))
else:
emotion = "No emotion detected."
confidence = 0.0
arousal, dominance, valence = 0.0, 0.0, 0.0
else:
emotion = "Emotion model not loaded."
confidence = 0.0
arousal, dominance, valence = 0.0, 0.0, 0.0
# Plotting Waveform
plt.figure(figsize=(10, 4))
librosa.display.waveshow(y, sr=sr)
plt.title("Waveform")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_waveform:
plt.savefig(tmp_waveform.name, bbox_inches='tight')
waveform_plot_path = tmp_waveform.name
plt.close()
# Plotting Mel Spectrogram
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
plt.figure(figsize=(10, 4))
librosa.display.specshow(librosa.power_to_db(mel_spec, ref=np.max), sr=sr, x_axis='time', y_axis='mel')
plt.colorbar(format='%+2.0f dB')
plt.title("Mel Spectrogram")
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_mel:
plt.savefig(tmp_mel.name, bbox_inches='tight')
mel_spec_plot_path = tmp_mel.name
plt.close()
return (
transcription, # Transcription (textbox)
emotion.capitalize(), # Emotion (textbox)
confidence, # Confidence (%) (number)
arousal, # Arousal (number)
dominance, # Dominance (number)
valence, # Valence (number)
waveform_plot_path, # Waveform Plot (image)
mel_spec_plot_path # Mel Spectrogram Plot (image)
)
except Exception as e:
return (
f"Error: {str(e)}", # Transcription (textbox)
None, # Emotion (textbox)
None, # Confidence (%) (number)
None, # Arousal (number)
None, # Dominance (number)
None, # Valence (number)
None, # Waveform Plot (image)
None # Mel Spectrogram Plot (image)
)
def create_emotion_recognition_tab():
"""
Creates the Emotion Recognition tab in the Gradio interface.
"""
with gr.Row():
with gr.Column(scale=2):
input_audio = gr.Audio(label="Input Audio", type="filepath")
gr.Examples(
examples=["./assets/audio/fitness.wav"],
inputs=[input_audio],
label="Examples"
)
with gr.Column(scale=1):
transcription_output = gr.Textbox(label="Transcription", interactive=False)
emotion_output = gr.Textbox(label="Emotion", interactive=False)
confidence_output = gr.Number(label="Confidence (%)", interactive=False)
arousal_output = gr.Number(label="Arousal (Level of Energy)", interactive=False)
dominance_output = gr.Number(label="Dominance (Degree of Control)", interactive=False)
valence_output = gr.Number(label="Valence (Positivity/Negativity)", interactive=False)
with gr.Column(scale=1):
waveform_plot = gr.Image(label="Waveform")
mel_spec_plot = gr.Image(label="Mel Spectrogram")
input_audio.change(
fn=process_audio_emotion,
inputs=[input_audio],
outputs=[
transcription_output,
emotion_output,
confidence_output,
arousal_output,
dominance_output,
valence_output,
waveform_plot,
mel_spec_plot
]
)
# Call create_emotion_recognition_tab to create the Gradio interface
|