File size: 9,660 Bytes
18c46ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# tabs/speech_stress_analysis.py

import gradio as gr
import librosa
import numpy as np
import matplotlib.pyplot as plt
import tempfile
import warnings

warnings.filterwarnings("ignore", category=UserWarning, module='librosa')

def extract_audio_features(audio_file):
    y, sr = librosa.load(audio_file, sr=None)
    
    # Fundamental frequency estimation using librosa.pyin
    f0, voiced_flag, voiced_probs = librosa.pyin(y, fmin=75, fmax=600)
    f0 = f0[~np.isnan(f0)]  # Remove unvoiced frames

    # Energy (intensity)
    energy = librosa.feature.rms(y=y)[0]

    # MFCCs (Mel-frequency cepstral coefficients)
    mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)

    # Onset envelope for speech rate estimation
    onset_env = librosa.onset.onset_strength(y=y, sr=sr)
    tempo, _ = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
    speech_rate = tempo / 60  # Speech rate estimation (syllables per second)

    return f0, energy, speech_rate, mfccs, y, sr

def analyze_voice_stress(audio_file):
    if not audio_file:
        return "No audio file provided.", None, None

    try:
        f0, energy, speech_rate, mfccs, y, sr = extract_audio_features(audio_file)

        # Calculate statistical measures
        mean_f0 = np.mean(f0)
        std_f0 = np.std(f0)
        mean_energy = np.mean(energy)
        std_energy = np.std(energy)

        # Normative data (example values from medical literature)
        norm_mean_f0_male = 110
        norm_mean_f0_female = 220
        norm_std_f0 = 20
        norm_mean_energy = 0.02
        norm_std_energy = 0.005
        norm_speech_rate = 4.4
        norm_std_speech_rate = 0.5

        # Gender detection
        gender = 'male' if mean_f0 < 165 else 'female'
        norm_mean_f0 = norm_mean_f0_male if gender == 'male' else norm_mean_f0_female

        # Compute Z-scores
        z_f0 = (mean_f0 - norm_mean_f0) / norm_std_f0
        z_energy = (mean_energy - norm_mean_energy) / norm_std_energy
        z_speech_rate = (speech_rate - norm_speech_rate) / norm_std_speech_rate

        # Combine Z-scores for stress level
        stress_score = (0.4 * z_f0) + (0.4 * z_speech_rate) + (0.2 * z_energy)
        stress_level = float(1 / (1 + np.exp(-stress_score)) * 100)  # Sigmoid function

        if stress_level < 20:
            stress_category = "Very Low Stress"
        elif stress_level < 40:
            stress_category = "Low Stress"
        elif stress_level < 60:
            stress_category = "Moderate Stress"
        elif stress_level < 80:
            stress_category = "High Stress"
        else:
            stress_category = "Very High Stress"

        # More verbose interpretations for each stress category
        interpretations = {
            "Very Low Stress": (
                "Your vocal analysis indicates a very relaxed state. "
                "This suggests that you're currently experiencing minimal stress. "
                "Maintaining such low stress levels is beneficial for your health. "
                "Continue engaging in activities that promote relaxation and well-being. "
                "Regular self-care practices can help sustain this positive state."
            ),
            "Low Stress": (
                "Minor signs of stress are detected in your voice. "
                "This is common due to everyday challenges and is usually not concerning. "
                "Incorporating relaxation techniques, like deep breathing or meditation, may help. "
                "Regular breaks and leisure activities can also reduce stress. "
                "Staying mindful of stress levels supports overall health."
            ),
            "Moderate Stress": (
                "Your voice reflects moderate stress levels. "
                "This could be due to ongoing pressures or challenges you're facing. "
                "Consider practicing stress management strategies such as mindfulness exercises or physical activity. "
                "Identifying stressors and addressing them can be beneficial. "
                "Balancing work and rest is important for your well-being."
            ),
            "High Stress": (
                "Elevated stress levels are apparent in your vocal patterns. "
                "It's important to recognize and address these feelings. "
                "Identifying stressors and seeking support from friends, family, or professionals could be helpful. "
                "Engaging in stress reduction techniques is recommended. "
                "Taking proactive steps can improve your mental and physical health."
            ),
            "Very High Stress": (
                "Your voice suggests very high stress levels. "
                "This may indicate significant strain or anxiety. "
                "It may be helpful to consult a healthcare professional for support. "
                "Promptly addressing stress is important for your well-being. "
                "Consider reaching out to trusted individuals or resources."
            )
        }

        final_interpretation = interpretations[stress_category]

        # Plotting
        fig, axs = plt.subplots(5, 1, figsize=(10, 15))

        # Plot Fundamental Frequency (Pitch)
        axs[0].plot(f0)
        axs[0].set_title('Fundamental Frequency (Pitch)')
        axs[0].set_ylabel('Frequency (Hz)')

        # Plot Energy (Loudness)
        axs[1].plot(energy)
        axs[1].set_title('Energy (Loudness)')
        axs[1].set_ylabel('Energy')

        # Plot MFCCs
        img = librosa.display.specshow(mfccs, sr=sr, x_axis='time', ax=axs[2])
        axs[2].set_title('MFCCs (Mel-frequency cepstral coefficients)')
        fig.colorbar(img, ax=axs[2])

        # Plot Waveform
        librosa.display.waveshow(y, sr=sr, ax=axs[3])
        axs[3].set_title('Waveform')
        axs[3].set_xlabel('Time (s)')
        axs[3].set_ylabel('Amplitude')

        # Plot Pitch Contour (Histogram of f0)
        axs[4].hist(f0, bins=50, color='blue', alpha=0.7)
        axs[4].set_title('Pitch Contour (Histogram of f0)')
        axs[4].set_xlabel('Frequency (Hz)')
        axs[4].set_ylabel('Count')

        plt.tight_layout()
        with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
            plt.savefig(temp_file.name)
            plot_path = temp_file.name
        plt.close()

        # Return separate values for Gradio output components
        return f"{stress_level:.2f}% - {stress_category}", final_interpretation, plot_path

    except Exception as e:
        return f"Error: {str(e)}", None, None


def create_voice_stress_tab():
    custom_css = """
    /* General container styling for mobile */
    .gradio-container {
        padding: 10px !important;
        font-size: 16px !important;
    }

    /* Headings */
    h3 {
        text-align: center;
        font-size: 1.5em !important;
        margin-bottom: 20px !important;
    }

    /* Full width for audio input and other components */
    .gradio-container .gradio-row, .gradio-container .gradio-column {
        flex-direction: column !important;
        align-items: center !important;
    }

    /* Make the components scale better on smaller screens */
    #input_audio, #stress_output, #interpretation_output, #plot_output {
        width: 100% !important;
        max-width: 100% !important;
    }

    #input_audio label, #stress_output label, #interpretation_output label, #plot_output label {
        font-size: 1.2em !important;
    }

    /* Textbox area adjustment */
    #interpretation_output textarea {
        font-size: 1em !important;
        line-height: 1.4 !important;
    }

    /* Responsive styling for images */
    #plot_output img {
        width: 100% !important;
        height: auto !important;
    }

    /* Adjust clear button */
    #clear_btn button {
        font-size: 1em !important;
        padding: 10px 20px !important;
    }

    /* Responsive adjustments */
    @media only screen and (max-width: 600px) {
        .gradio-container {
            padding: 5px !important;
            font-size: 14px !important;
        }
        h3 {
            font-size: 1.2em !important;
        }
        #clear_btn button {
            font-size: 0.9em !important;
        }
        #interpretation_output textarea {
            font-size: 0.9em !important;
        }
    }
    """

    with gr.Blocks(css=custom_css) as voice_stress_tab:
        gr.Markdown("<h3>Speech Stress Analysis</h3>")
    
        with gr.Column():
            input_audio = gr.Audio(label="Upload your voice recording", type="filepath", elem_id="input_audio")
            stress_output = gr.Label(label="Stress Interpretation", elem_id="stress_output")
            interpretation_output = gr.Textbox(label="Detailed Interpretation", lines=6, elem_id="interpretation_output")
            plot_output = gr.Image(label="Stress Analysis Plot", elem_id="plot_output")

            # Examples section
            gr.Examples(
                examples=["./assets/audio/fitness.wav"],
                inputs=[input_audio],
                label="Examples"
            )

            # Analyze stress when audio input changes
            input_audio.change(
                analyze_voice_stress, 
                inputs=[input_audio], 
                outputs=[stress_output, interpretation_output, plot_output]
            )

            # Clear button to reset outputs
            gr.Button("Clear", elem_id="clear_btn").click(
                lambda: (None, None, None, None),
                outputs=[input_audio, stress_output, interpretation_output, plot_output]
            )

    return voice_stress_tab