dyagnosys-free / app /model_architectures.py
vitorcalvi's picture
1
18c46ab
# model_architectures.py
import torch
import torch.nn as nn
import torchvision.models as models
import logging
logger = logging.getLogger(__name__)
class ResNet50(nn.Module):
def __init__(self, num_classes=7, channels=3):
super(ResNet50, self).__init__()
# Define layers directly without wrapping in 'resnet'
self.conv_layer_s2_same = nn.Conv2d(channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.batch_norm1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# Load pre-trained ResNet50 model
resnet = models.resnet50(pretrained=True)
# Extract layers
self.layer1 = resnet.layer1
self.layer2 = resnet.layer2
self.layer3 = resnet.layer3
self.layer4 = resnet.layer4
self.avgpool = resnet.avgpool
# Fully connected layers
self.fc1 = nn.Linear(resnet.fc.in_features, num_classes)
# If your model has additional fully connected layers, define them here
# Example:
# self.fc2 = nn.Linear(num_classes, num_classes)
def forward(self, x):
x = self.conv_layer_s2_same(x)
x = self.batch_norm1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
# If additional fully connected layers are defined, pass x through them
# x = self.fc2(x)
return x
def extract_features(self, x):
x = self.conv_layer_s2_same(x)
x = self.batch_norm1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
return x
class LSTMPyTorch(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(LSTMPyTorch, self).__init__()
self.hidden_size = hidden_size
# Define separate LSTM layers
self.lstm1 = nn.LSTM(input_size, hidden_size, num_layers=1, batch_first=True)
self.lstm2 = nn.LSTM(hidden_size, hidden_size, num_layers=1, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h0_1 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
c0_1 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
out1, _ = self.lstm1(x, (h0_1, c0_1))
h0_2 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
c0_2 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
out2, _ = self.lstm2(out1, (h0_2, c0_2))
out = self.fc(out2[:, -1, :])
return out