Spaces:
Runtime error
Runtime error
Commit
Β·
793723d
1
Parent(s):
c2b3a7a
This view is limited to 50 files because it contains too many changes. Β
See raw diff
- LICENSE +21 -0
- README.md +6 -7
- app.py +48 -0
- app/__init__.py +0 -0
- app/__pycache__/__init__.cpython-310.pyc +0 -0
- app/__pycache__/__init__.cpython-312.pyc +0 -0
- app/__pycache__/__init__.cpython-38.pyc +0 -0
- app/__pycache__/app_utils.cpython-310.pyc +0 -0
- app/__pycache__/app_utils.cpython-312.pyc +0 -0
- app/__pycache__/app_utils.cpython-38.pyc +0 -0
- app/__pycache__/authors.cpython-310.pyc +0 -0
- app/__pycache__/authors.cpython-312.pyc +0 -0
- app/__pycache__/authors.cpython-38.pyc +0 -0
- app/__pycache__/config.cpython-310.pyc +0 -0
- app/__pycache__/config.cpython-312.pyc +0 -0
- app/__pycache__/config.cpython-38.pyc +0 -0
- app/__pycache__/description.cpython-310.pyc +0 -0
- app/__pycache__/description.cpython-312.pyc +0 -0
- app/__pycache__/description.cpython-38.pyc +0 -0
- app/__pycache__/face_utils.cpython-310.pyc +0 -0
- app/__pycache__/face_utils.cpython-312.pyc +0 -0
- app/__pycache__/face_utils.cpython-38.pyc +0 -0
- app/__pycache__/model.cpython-310.pyc +0 -0
- app/__pycache__/model.cpython-312.pyc +0 -0
- app/__pycache__/model.cpython-38.pyc +0 -0
- app/__pycache__/model_architectures.cpython-310.pyc +0 -0
- app/__pycache__/model_architectures.cpython-312.pyc +0 -0
- app/__pycache__/model_architectures.cpython-38.pyc +0 -0
- app/__pycache__/plot.cpython-310.pyc +0 -0
- app/__pycache__/plot.cpython-312.pyc +0 -0
- app/__pycache__/plot.cpython-38.pyc +0 -0
- app/app_utils.py +333 -0
- app/face_utils.py +68 -0
- app/model.py +78 -0
- app/model_architectures.py +46 -0
- assets/.DS_Store +0 -0
- assets/audio/fitness.wav +0 -0
- assets/images/dyaglogo.webp +0 -0
- assets/images/fitness.jpg +0 -0
- assets/resources/README.md +7 -0
- assets/videos/fitness.mp4 +0 -0
- config.toml +10 -0
- css/app.css +101 -0
- requirements.txt +50 -0
- tabs/.DS_Store +0 -0
- tabs/FACS_analysis.py +101 -0
- tabs/__pycache__/FACS_analysis.cpython-310.pyc +0 -0
- tabs/__pycache__/audio_emotion_recognition.cpython-310.pyc +0 -0
- tabs/__pycache__/blink_detection.cpython-310.pyc +0 -0
- tabs/__pycache__/body_movement_analysis.cpython-310.pyc +0 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Elena Ryumina
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
-
short_description: gpu
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Multi-Modal for Emotion and Sentiment Analysis (for GITEX 2024)
|
3 |
+
emoji: ππ²ππ₯π₯΄π±π‘
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: '4.24.0'
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from tabs.FACS_analysis import create_facs_analysis_tab
|
4 |
+
from ui_components import CUSTOM_CSS, HEADER_HTML, DISCLAIMER_HTML
|
5 |
+
import spaces # Importing spaces to utilize Zero GPU
|
6 |
+
|
7 |
+
# Initialize Zero GPU
|
8 |
+
if torch.cuda.is_available():
|
9 |
+
zero = torch.Tensor([0]).cuda()
|
10 |
+
print(f"Initial device: {zero.device}")
|
11 |
+
else:
|
12 |
+
zero = torch.Tensor([0])
|
13 |
+
print("CUDA is not available. Using CPU.")
|
14 |
+
|
15 |
+
# Define the tab structure
|
16 |
+
TAB_STRUCTURE = [
|
17 |
+
("Visual Analysis", [
|
18 |
+
("FACS for Stress, Anxiety, Depression", create_facs_analysis_tab),
|
19 |
+
])
|
20 |
+
]
|
21 |
+
|
22 |
+
# Decorate GPU-dependent function with Zero GPU
|
23 |
+
@spaces.GPU(duration=120) # Allocates GPU for 120 seconds when needed
|
24 |
+
def create_demo():
|
25 |
+
if torch.cuda.is_available():
|
26 |
+
print(f"Device inside create_demo: {zero.device}")
|
27 |
+
else:
|
28 |
+
print("CUDA is not available inside create_demo.")
|
29 |
+
|
30 |
+
# Gradio blocks to create the interface
|
31 |
+
with gr.Blocks(css=CUSTOM_CSS) as demo:
|
32 |
+
gr.Markdown(HEADER_HTML)
|
33 |
+
with gr.Tabs(elem_classes=["main-tab"]):
|
34 |
+
for main_tab, sub_tabs in TAB_STRUCTURE:
|
35 |
+
with gr.Tab(main_tab):
|
36 |
+
with gr.Tabs():
|
37 |
+
for sub_tab, create_fn in sub_tabs:
|
38 |
+
with gr.Tab(sub_tab):
|
39 |
+
create_fn()
|
40 |
+
gr.HTML(DISCLAIMER_HTML)
|
41 |
+
|
42 |
+
return demo
|
43 |
+
|
44 |
+
# Create the demo instance
|
45 |
+
demo = create_demo()
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
demo.launch()
|
app/__init__.py
ADDED
File without changes
|
app/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (150 Bytes). View file
|
|
app/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (168 Bytes). View file
|
|
app/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (162 Bytes). View file
|
|
app/__pycache__/app_utils.cpython-310.pyc
ADDED
Binary file (8.6 kB). View file
|
|
app/__pycache__/app_utils.cpython-312.pyc
ADDED
Binary file (8.32 kB). View file
|
|
app/__pycache__/app_utils.cpython-38.pyc
ADDED
Binary file (4.24 kB). View file
|
|
app/__pycache__/authors.cpython-310.pyc
ADDED
Binary file (2.42 kB). View file
|
|
app/__pycache__/authors.cpython-312.pyc
ADDED
Binary file (2.44 kB). View file
|
|
app/__pycache__/authors.cpython-38.pyc
ADDED
Binary file (2.43 kB). View file
|
|
app/__pycache__/config.cpython-310.pyc
ADDED
Binary file (984 Bytes). View file
|
|
app/__pycache__/config.cpython-312.pyc
ADDED
Binary file (1.31 kB). View file
|
|
app/__pycache__/config.cpython-38.pyc
ADDED
Binary file (985 Bytes). View file
|
|
app/__pycache__/description.cpython-310.pyc
ADDED
Binary file (2.31 kB). View file
|
|
app/__pycache__/description.cpython-312.pyc
ADDED
Binary file (1.73 kB). View file
|
|
app/__pycache__/description.cpython-38.pyc
ADDED
Binary file (1.63 kB). View file
|
|
app/__pycache__/face_utils.cpython-310.pyc
ADDED
Binary file (2.21 kB). View file
|
|
app/__pycache__/face_utils.cpython-312.pyc
ADDED
Binary file (4.27 kB). View file
|
|
app/__pycache__/face_utils.cpython-38.pyc
ADDED
Binary file (2.22 kB). View file
|
|
app/__pycache__/model.cpython-310.pyc
ADDED
Binary file (2.93 kB). View file
|
|
app/__pycache__/model.cpython-312.pyc
ADDED
Binary file (4.17 kB). View file
|
|
app/__pycache__/model.cpython-38.pyc
ADDED
Binary file (2.7 kB). View file
|
|
app/__pycache__/model_architectures.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
app/__pycache__/model_architectures.cpython-312.pyc
ADDED
Binary file (9.69 kB). View file
|
|
app/__pycache__/model_architectures.cpython-38.pyc
ADDED
Binary file (5.25 kB). View file
|
|
app/__pycache__/plot.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
app/__pycache__/plot.cpython-312.pyc
ADDED
Binary file (1.6 kB). View file
|
|
app/__pycache__/plot.cpython-38.pyc
ADDED
Binary file (1.12 kB). View file
|
|
app/app_utils.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import mediapipe as mp
|
4 |
+
from PIL import Image
|
5 |
+
import cv2
|
6 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
# Importing necessary components for the Gradio app
|
10 |
+
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
|
11 |
+
from app.face_utils import get_box, display_info
|
12 |
+
from app.config import DICT_EMO, config_data
|
13 |
+
from app.plot import statistics_plot
|
14 |
+
|
15 |
+
mp_face_mesh = mp.solutions.face_mesh
|
16 |
+
|
17 |
+
def get_device():
|
18 |
+
if torch.backends.mps.is_available():
|
19 |
+
return torch.device("mps")
|
20 |
+
elif torch.cuda.is_available():
|
21 |
+
return torch.device("cuda")
|
22 |
+
else:
|
23 |
+
return torch.device("cpu")
|
24 |
+
|
25 |
+
device = get_device()
|
26 |
+
print(f"Using device: {device}")
|
27 |
+
|
28 |
+
# Move models to the selected device
|
29 |
+
pth_model_static = pth_model_static.to(device)
|
30 |
+
pth_model_dynamic = pth_model_dynamic.to(device)
|
31 |
+
|
32 |
+
def preprocess_image_and_predict(inp):
|
33 |
+
inp = np.array(inp)
|
34 |
+
|
35 |
+
if inp is None:
|
36 |
+
return None, None, None
|
37 |
+
|
38 |
+
try:
|
39 |
+
h, w = inp.shape[:2]
|
40 |
+
except Exception:
|
41 |
+
return None, None, None
|
42 |
+
|
43 |
+
with mp_face_mesh.FaceMesh(
|
44 |
+
max_num_faces=1,
|
45 |
+
refine_landmarks=False,
|
46 |
+
min_detection_confidence=0.5,
|
47 |
+
min_tracking_confidence=0.5,
|
48 |
+
) as face_mesh:
|
49 |
+
results = face_mesh.process(inp)
|
50 |
+
if results.multi_face_landmarks:
|
51 |
+
for fl in results.multi_face_landmarks:
|
52 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
53 |
+
cur_face = inp[startY:endY, startX:endX]
|
54 |
+
cur_face_n = pth_processing(Image.fromarray(cur_face)).to(device)
|
55 |
+
with torch.no_grad():
|
56 |
+
prediction = (
|
57 |
+
torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
|
58 |
+
.detach()
|
59 |
+
.cpu()
|
60 |
+
.numpy()[0]
|
61 |
+
)
|
62 |
+
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
63 |
+
grayscale_cam = cam(input_tensor=cur_face_n)
|
64 |
+
grayscale_cam = grayscale_cam[0, :]
|
65 |
+
cur_face_hm = cv2.resize(cur_face,(224,224))
|
66 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
67 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
|
68 |
+
|
69 |
+
return cur_face, heatmap, confidences
|
70 |
+
|
71 |
+
def preprocess_frame_and_predict_aus(frame):
|
72 |
+
if len(frame.shape) == 2:
|
73 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
74 |
+
elif frame.shape[2] == 4:
|
75 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
|
76 |
+
|
77 |
+
with mp_face_mesh.FaceMesh(
|
78 |
+
max_num_faces=1,
|
79 |
+
refine_landmarks=False,
|
80 |
+
min_detection_confidence=0.5,
|
81 |
+
min_tracking_confidence=0.5
|
82 |
+
) as face_mesh:
|
83 |
+
results = face_mesh.process(frame)
|
84 |
+
|
85 |
+
if results.multi_face_landmarks:
|
86 |
+
h, w = frame.shape[:2]
|
87 |
+
for fl in results.multi_face_landmarks:
|
88 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
89 |
+
cur_face = frame[startY:endY, startX:endX]
|
90 |
+
cur_face_n = pth_processing(Image.fromarray(cur_face)).to(device)
|
91 |
+
|
92 |
+
with torch.no_grad():
|
93 |
+
features = pth_model_static(cur_face_n)
|
94 |
+
au_intensities = features_to_au_intensities(features)
|
95 |
+
|
96 |
+
grayscale_cam = cam(input_tensor=cur_face_n)
|
97 |
+
grayscale_cam = grayscale_cam[0, :]
|
98 |
+
cur_face_hm = cv2.resize(cur_face, (224, 224))
|
99 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
100 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
|
101 |
+
|
102 |
+
return cur_face, au_intensities, heatmap
|
103 |
+
|
104 |
+
return None, None, None
|
105 |
+
|
106 |
+
def features_to_au_intensities(features):
|
107 |
+
features_np = features.detach().cpu().numpy()[0]
|
108 |
+
au_intensities = (features_np - features_np.min()) / (features_np.max() - features_np.min())
|
109 |
+
return au_intensities[:24] # Assuming we want 24 AUs
|
110 |
+
|
111 |
+
def preprocess_video_and_predict(video):
|
112 |
+
cap = cv2.VideoCapture(video)
|
113 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
114 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
115 |
+
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
116 |
+
|
117 |
+
path_save_video_face = 'result_face.mp4'
|
118 |
+
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
119 |
+
|
120 |
+
path_save_video_hm = 'result_hm.mp4'
|
121 |
+
vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
122 |
+
|
123 |
+
lstm_features = []
|
124 |
+
count_frame = 1
|
125 |
+
count_face = 0
|
126 |
+
probs = []
|
127 |
+
frames = []
|
128 |
+
au_intensities_list = []
|
129 |
+
last_output = None
|
130 |
+
last_heatmap = None
|
131 |
+
last_au_intensities = None
|
132 |
+
cur_face = None
|
133 |
+
|
134 |
+
with mp_face_mesh.FaceMesh(
|
135 |
+
max_num_faces=1,
|
136 |
+
refine_landmarks=False,
|
137 |
+
min_detection_confidence=0.5,
|
138 |
+
min_tracking_confidence=0.5) as face_mesh:
|
139 |
+
|
140 |
+
while cap.isOpened():
|
141 |
+
_, frame = cap.read()
|
142 |
+
if frame is None: break
|
143 |
+
|
144 |
+
frame_copy = frame.copy()
|
145 |
+
frame_copy.flags.writeable = False
|
146 |
+
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
147 |
+
results = face_mesh.process(frame_copy)
|
148 |
+
frame_copy.flags.writeable = True
|
149 |
+
|
150 |
+
if results.multi_face_landmarks:
|
151 |
+
for fl in results.multi_face_landmarks:
|
152 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
153 |
+
cur_face = frame_copy[startY:endY, startX: endX]
|
154 |
+
|
155 |
+
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
|
156 |
+
cur_face_copy = pth_processing(Image.fromarray(cur_face)).to(device)
|
157 |
+
with torch.no_grad():
|
158 |
+
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().cpu().numpy()
|
159 |
+
au_intensities = features_to_au_intensities(pth_model_static(cur_face_copy))
|
160 |
+
|
161 |
+
grayscale_cam = cam(input_tensor=cur_face_copy)
|
162 |
+
grayscale_cam = grayscale_cam[0, :]
|
163 |
+
cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
|
164 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
165 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
|
166 |
+
last_heatmap = heatmap
|
167 |
+
last_au_intensities = au_intensities
|
168 |
+
|
169 |
+
if len(lstm_features) == 0:
|
170 |
+
lstm_features = [features]*10
|
171 |
+
else:
|
172 |
+
lstm_features = lstm_features[1:] + [features]
|
173 |
+
|
174 |
+
lstm_f = torch.from_numpy(np.vstack(lstm_features)).to(device)
|
175 |
+
lstm_f = torch.unsqueeze(lstm_f, 0)
|
176 |
+
with torch.no_grad():
|
177 |
+
output = pth_model_dynamic(lstm_f).detach().cpu().numpy()
|
178 |
+
last_output = output
|
179 |
+
|
180 |
+
if count_face == 0:
|
181 |
+
count_face += 1
|
182 |
+
|
183 |
+
else:
|
184 |
+
if last_output is not None:
|
185 |
+
output = last_output
|
186 |
+
heatmap = last_heatmap
|
187 |
+
au_intensities = last_au_intensities
|
188 |
+
|
189 |
+
elif last_output is None:
|
190 |
+
output = np.empty((1, 7))
|
191 |
+
output[:] = np.nan
|
192 |
+
au_intensities = np.empty(24)
|
193 |
+
au_intensities[:] = np.nan
|
194 |
+
|
195 |
+
probs.append(output[0])
|
196 |
+
frames.append(count_frame)
|
197 |
+
au_intensities_list.append(au_intensities)
|
198 |
+
else:
|
199 |
+
if last_output is not None:
|
200 |
+
lstm_features = []
|
201 |
+
empty = np.empty((7))
|
202 |
+
empty[:] = np.nan
|
203 |
+
probs.append(empty)
|
204 |
+
frames.append(count_frame)
|
205 |
+
au_intensities_list.append(np.full(24, np.nan))
|
206 |
+
|
207 |
+
if cur_face is not None:
|
208 |
+
heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
|
209 |
+
|
210 |
+
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
|
211 |
+
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
|
212 |
+
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
|
213 |
+
vid_writer_face.write(cur_face)
|
214 |
+
vid_writer_hm.write(heatmap_f)
|
215 |
+
|
216 |
+
count_frame += 1
|
217 |
+
if count_face != 0:
|
218 |
+
count_face += 1
|
219 |
+
|
220 |
+
vid_writer_face.release()
|
221 |
+
vid_writer_hm.release()
|
222 |
+
|
223 |
+
stat = statistics_plot(frames, probs)
|
224 |
+
au_stat = au_statistics_plot(frames, au_intensities_list)
|
225 |
+
|
226 |
+
if not stat or not au_stat:
|
227 |
+
return None, None, None, None, None
|
228 |
+
|
229 |
+
return video, path_save_video_face, path_save_video_hm, stat, au_stat
|
230 |
+
|
231 |
+
# The rest of the functions remain the same
|
232 |
+
# ...
|
233 |
+
|
234 |
+
def au_statistics_plot(frames, au_intensities_list):
|
235 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
236 |
+
au_intensities_array = np.array(au_intensities_list)
|
237 |
+
|
238 |
+
for i in range(au_intensities_array.shape[1]):
|
239 |
+
ax.plot(frames, au_intensities_array[:, i], label=f'AU{i+1}')
|
240 |
+
|
241 |
+
ax.set_xlabel('Frame')
|
242 |
+
ax.set_ylabel('AU Intensity')
|
243 |
+
ax.set_title('Action Unit Intensities Over Time')
|
244 |
+
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
|
245 |
+
plt.tight_layout()
|
246 |
+
return fig
|
247 |
+
|
248 |
+
def preprocess_video_and_predict_sleep_quality(video):
|
249 |
+
cap = cv2.VideoCapture(video)
|
250 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
251 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
252 |
+
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
253 |
+
|
254 |
+
path_save_video_original = 'result_original.mp4'
|
255 |
+
path_save_video_face = 'result_face.mp4'
|
256 |
+
path_save_video_sleep = 'result_sleep.mp4'
|
257 |
+
|
258 |
+
vid_writer_original = cv2.VideoWriter(path_save_video_original, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
259 |
+
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
260 |
+
vid_writer_sleep = cv2.VideoWriter(path_save_video_sleep, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
261 |
+
|
262 |
+
frames = []
|
263 |
+
sleep_quality_scores = []
|
264 |
+
eye_bags_images = []
|
265 |
+
|
266 |
+
with mp_face_mesh.FaceMesh(
|
267 |
+
max_num_faces=1,
|
268 |
+
refine_landmarks=False,
|
269 |
+
min_detection_confidence=0.5,
|
270 |
+
min_tracking_confidence=0.5) as face_mesh:
|
271 |
+
|
272 |
+
while cap.isOpened():
|
273 |
+
ret, frame = cap.read()
|
274 |
+
if not ret:
|
275 |
+
break
|
276 |
+
|
277 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
278 |
+
results = face_mesh.process(frame_rgb)
|
279 |
+
|
280 |
+
if results.multi_face_landmarks:
|
281 |
+
for fl in results.multi_face_landmarks:
|
282 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
283 |
+
cur_face = frame_rgb[startY:endY, startX:endX]
|
284 |
+
|
285 |
+
sleep_quality_score, eye_bags_image = analyze_sleep_quality(cur_face)
|
286 |
+
sleep_quality_scores.append(sleep_quality_score)
|
287 |
+
eye_bags_images.append(cv2.resize(eye_bags_image, (224, 224)))
|
288 |
+
|
289 |
+
sleep_quality_viz = create_sleep_quality_visualization(cur_face, sleep_quality_score)
|
290 |
+
|
291 |
+
cur_face = cv2.resize(cur_face, (224, 224))
|
292 |
+
|
293 |
+
vid_writer_face.write(cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR))
|
294 |
+
vid_writer_sleep.write(sleep_quality_viz)
|
295 |
+
|
296 |
+
vid_writer_original.write(frame)
|
297 |
+
frames.append(len(frames) + 1)
|
298 |
+
|
299 |
+
cap.release()
|
300 |
+
vid_writer_original.release()
|
301 |
+
vid_writer_face.release()
|
302 |
+
vid_writer_sleep.release()
|
303 |
+
|
304 |
+
sleep_stat = sleep_quality_statistics_plot(frames, sleep_quality_scores)
|
305 |
+
|
306 |
+
if eye_bags_images:
|
307 |
+
average_eye_bags_image = np.mean(np.array(eye_bags_images), axis=0).astype(np.uint8)
|
308 |
+
else:
|
309 |
+
average_eye_bags_image = np.zeros((224, 224, 3), dtype=np.uint8)
|
310 |
+
|
311 |
+
return (path_save_video_original, path_save_video_face, path_save_video_sleep,
|
312 |
+
average_eye_bags_image, sleep_stat)
|
313 |
+
|
314 |
+
def analyze_sleep_quality(face_image):
|
315 |
+
# Placeholder function - implement your sleep quality analysis here
|
316 |
+
sleep_quality_score = np.random.random()
|
317 |
+
eye_bags_image = cv2.resize(face_image, (224, 224))
|
318 |
+
return sleep_quality_score, eye_bags_image
|
319 |
+
|
320 |
+
def create_sleep_quality_visualization(face_image, sleep_quality_score):
|
321 |
+
viz = face_image.copy()
|
322 |
+
cv2.putText(viz, f"Sleep Quality: {sleep_quality_score:.2f}", (10, 30),
|
323 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
324 |
+
return cv2.cvtColor(viz, cv2.COLOR_RGB2BGR)
|
325 |
+
|
326 |
+
def sleep_quality_statistics_plot(frames, sleep_quality_scores):
|
327 |
+
# Placeholder function - implement your statistics plotting here
|
328 |
+
fig, ax = plt.subplots()
|
329 |
+
ax.plot(frames, sleep_quality_scores)
|
330 |
+
ax.set_xlabel('Frame')
|
331 |
+
ax.set_ylabel('Sleep Quality Score')
|
332 |
+
ax.set_title('Sleep Quality Over Time')
|
333 |
+
return fig
|
app/face_utils.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: face_utils.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module contains utility functions related to facial landmarks and image processing.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import math
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
|
13 |
+
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
|
14 |
+
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
|
15 |
+
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
|
16 |
+
return x_px, y_px
|
17 |
+
|
18 |
+
|
19 |
+
def get_box(fl, w, h):
|
20 |
+
idx_to_coors = {}
|
21 |
+
for idx, landmark in enumerate(fl.landmark):
|
22 |
+
landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)
|
23 |
+
if landmark_px:
|
24 |
+
idx_to_coors[idx] = landmark_px
|
25 |
+
|
26 |
+
x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
|
27 |
+
y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
|
28 |
+
endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
|
29 |
+
endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])
|
30 |
+
|
31 |
+
(startX, startY) = (max(0, x_min), max(0, y_min))
|
32 |
+
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
33 |
+
|
34 |
+
return startX, startY, endX, endY
|
35 |
+
|
36 |
+
def display_info(img, text, margin=1.0, box_scale=1.0):
|
37 |
+
img_copy = img.copy()
|
38 |
+
img_h, img_w, _ = img_copy.shape
|
39 |
+
line_width = int(min(img_h, img_w) * 0.001)
|
40 |
+
thickness = max(int(line_width / 3), 1)
|
41 |
+
|
42 |
+
font_face = cv2.FONT_HERSHEY_SIMPLEX
|
43 |
+
font_color = (0, 0, 0)
|
44 |
+
font_scale = thickness / 1.5
|
45 |
+
|
46 |
+
t_w, t_h = cv2.getTextSize(text, font_face, font_scale, None)[0]
|
47 |
+
|
48 |
+
margin_n = int(t_h * margin)
|
49 |
+
sub_img = img_copy[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
|
50 |
+
img_w - t_w - margin_n - int(2 * t_h * box_scale): img_w - margin_n]
|
51 |
+
|
52 |
+
white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255
|
53 |
+
|
54 |
+
img_copy[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
|
55 |
+
img_w - t_w - margin_n - int(2 * t_h * box_scale):img_w - margin_n] = cv2.addWeighted(sub_img, 0.5, white_rect, .5, 1.0)
|
56 |
+
|
57 |
+
cv2.putText(img=img_copy,
|
58 |
+
text=text,
|
59 |
+
org=(img_w - t_w - margin_n - int(2 * t_h * box_scale) // 2,
|
60 |
+
0 + margin_n + t_h + int(2 * t_h * box_scale) // 2),
|
61 |
+
fontFace=font_face,
|
62 |
+
fontScale=font_scale,
|
63 |
+
color=font_color,
|
64 |
+
thickness=thickness,
|
65 |
+
lineType=cv2.LINE_AA,
|
66 |
+
bottomLeftOrigin=False)
|
67 |
+
|
68 |
+
return img_copy
|
app/model.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from pytorch_grad_cam import GradCAM
|
6 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
7 |
+
import logging
|
8 |
+
from app.model_architectures import ResNet50, LSTMPyTorch
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
# Determine the device
|
15 |
+
device = torch.device('mps' if torch.backends.mps.is_available() else 'cuda' if torch.cuda.is_available() else 'cpu')
|
16 |
+
logger.info(f"Using device: {device}")
|
17 |
+
|
18 |
+
# Define paths
|
19 |
+
STATIC_MODEL_PATH = 'assets/models/FER_static_ResNet50_AffectNet.pt'
|
20 |
+
DYNAMIC_MODEL_PATH = 'assets/models/FER_dynamic_LSTM.pt'
|
21 |
+
|
22 |
+
def load_model(model_class, model_path, *args, **kwargs):
|
23 |
+
model = model_class(*args, **kwargs).to(device)
|
24 |
+
if os.path.exists(model_path):
|
25 |
+
try:
|
26 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
27 |
+
model.eval()
|
28 |
+
logger.info(f"Model loaded successfully from {model_path}")
|
29 |
+
except Exception as e:
|
30 |
+
logger.error(f"Error loading model from {model_path}: {str(e)}")
|
31 |
+
logger.info("Initializing with random weights.")
|
32 |
+
else:
|
33 |
+
logger.warning(f"Model file not found at {model_path}. Initializing with random weights.")
|
34 |
+
return model
|
35 |
+
|
36 |
+
# Load the static model
|
37 |
+
pth_model_static = load_model(ResNet50, STATIC_MODEL_PATH, num_classes=7, channels=3)
|
38 |
+
|
39 |
+
# Load the dynamic model
|
40 |
+
pth_model_dynamic = load_model(LSTMPyTorch, DYNAMIC_MODEL_PATH, input_size=2048, hidden_size=256, num_layers=2, num_classes=7)
|
41 |
+
|
42 |
+
# Set up GradCAM
|
43 |
+
target_layers = [pth_model_static.resnet.layer4[-1]]
|
44 |
+
cam = GradCAM(model=pth_model_static, target_layers=target_layers)
|
45 |
+
|
46 |
+
# Define image preprocessing
|
47 |
+
pth_transform = transforms.Compose([
|
48 |
+
transforms.Resize((224, 224)),
|
49 |
+
transforms.ToTensor(),
|
50 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
51 |
+
])
|
52 |
+
|
53 |
+
def pth_processing(img):
|
54 |
+
img = pth_transform(img).unsqueeze(0).to(device)
|
55 |
+
return img
|
56 |
+
|
57 |
+
def predict_emotion(img):
|
58 |
+
with torch.no_grad():
|
59 |
+
output = pth_model_static(pth_processing(img))
|
60 |
+
_, predicted = torch.max(output, 1)
|
61 |
+
return predicted.item()
|
62 |
+
|
63 |
+
def get_emotion_probabilities(img):
|
64 |
+
with torch.no_grad():
|
65 |
+
output = nn.functional.softmax(pth_model_static(pth_processing(img)), dim=1)
|
66 |
+
return output.squeeze().cpu().numpy()
|
67 |
+
|
68 |
+
def generate_cam(img):
|
69 |
+
input_tensor = pth_processing(img)
|
70 |
+
targets = [ClassifierOutputTarget(predict_emotion(img))]
|
71 |
+
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
|
72 |
+
return grayscale_cam[0, :]
|
73 |
+
|
74 |
+
# Add any other necessary functions or variables here
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
logger.info("Model initialization complete.")
|
78 |
+
# You can add some test code here to verify everything is working correctly
|
app/model_architectures.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.models as models
|
4 |
+
|
5 |
+
class ResNet50(nn.Module):
|
6 |
+
def __init__(self, num_classes=7, channels=3):
|
7 |
+
super(ResNet50, self).__init__()
|
8 |
+
self.resnet = models.resnet50(pretrained=True)
|
9 |
+
# Modify the first convolutional layer if channels != 3
|
10 |
+
if channels != 3:
|
11 |
+
self.resnet.conv1 = nn.Conv2d(channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
12 |
+
num_features = self.resnet.fc.in_features
|
13 |
+
self.resnet.fc = nn.Linear(num_features, num_classes)
|
14 |
+
|
15 |
+
def forward(self, x):
|
16 |
+
return self.resnet(x)
|
17 |
+
|
18 |
+
def extract_features(self, x):
|
19 |
+
x = self.resnet.conv1(x)
|
20 |
+
x = self.resnet.bn1(x)
|
21 |
+
x = self.resnet.relu(x)
|
22 |
+
x = self.resnet.maxpool(x)
|
23 |
+
|
24 |
+
x = self.resnet.layer1(x)
|
25 |
+
x = self.resnet.layer2(x)
|
26 |
+
x = self.resnet.layer3(x)
|
27 |
+
x = self.resnet.layer4(x)
|
28 |
+
|
29 |
+
x = self.resnet.avgpool(x)
|
30 |
+
x = torch.flatten(x, 1)
|
31 |
+
return x
|
32 |
+
|
33 |
+
class LSTMPyTorch(nn.Module):
|
34 |
+
def __init__(self, input_size, hidden_size, num_layers, num_classes):
|
35 |
+
super(LSTMPyTorch, self).__init__()
|
36 |
+
self.hidden_size = hidden_size
|
37 |
+
self.num_layers = num_layers
|
38 |
+
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
|
39 |
+
self.fc = nn.Linear(hidden_size, num_classes)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
|
43 |
+
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
|
44 |
+
out, _ = self.lstm(x, (h0, c0))
|
45 |
+
out = self.fc(out[:, -1, :])
|
46 |
+
return out
|
assets/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
assets/audio/fitness.wav
ADDED
Binary file (845 kB). View file
|
|
assets/images/dyaglogo.webp
ADDED
![]() |
assets/images/fitness.jpg
ADDED
![]() |
assets/resources/README.md
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
https://huggingface.co/ElenaRyumina/face_emotion_recognition/tree/main
|
2 |
+
|
3 |
+
https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolve/main/FER_static_ResNet50_AffectNet.pt
|
4 |
+
|
5 |
+
https://huggingface.co/public-data/dlib_face_landmark_model/tree/main
|
6 |
+
|
7 |
+
wget https://huggingface.co/public-data/dlib_face_landmark_model/resolve/main/shape_predictor_68_face_landmarks.dat
|
assets/videos/fitness.mp4
ADDED
Binary file (680 kB). View file
|
|
config.toml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APP_VERSION = "0.2.0"
|
2 |
+
FRAME_DOWNSAMPLING = 5
|
3 |
+
|
4 |
+
[model_static]
|
5 |
+
url = "https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolve/main/FER_static_ResNet50_AffectNet.pt"
|
6 |
+
path = "assets/models/FER_static_ResNet50_AffectNet.pt"
|
7 |
+
|
8 |
+
[model_dynamic]
|
9 |
+
url = "https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolve/main/FER_dinamic_LSTM_IEMOCAP.pt"
|
10 |
+
path = "assets/models/FER_dinamic_LSTM_IEMOCAP.pt"
|
css/app.css
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
div.app-flex-container {
|
2 |
+
display: flex;
|
3 |
+
align-items: left;
|
4 |
+
}
|
5 |
+
|
6 |
+
div.app-flex-container > a {
|
7 |
+
margin-left: 6px;
|
8 |
+
}
|
9 |
+
|
10 |
+
div.dl1 div.upload-container {
|
11 |
+
height: 350px;
|
12 |
+
max-height: 350px;
|
13 |
+
}
|
14 |
+
|
15 |
+
div.dl2 {
|
16 |
+
max-height: 200px;
|
17 |
+
}
|
18 |
+
|
19 |
+
div.dl2 img {
|
20 |
+
max-height: 200px;
|
21 |
+
}
|
22 |
+
|
23 |
+
div.dl5 {
|
24 |
+
max-height: 200px;
|
25 |
+
}
|
26 |
+
|
27 |
+
div.dl5 img {
|
28 |
+
max-height: 200px;
|
29 |
+
}
|
30 |
+
|
31 |
+
div.video1 div.video-container {
|
32 |
+
height: 500px;
|
33 |
+
}
|
34 |
+
|
35 |
+
div.video2 {
|
36 |
+
height: 200px;
|
37 |
+
}
|
38 |
+
|
39 |
+
div.video3 {
|
40 |
+
height: 200px;
|
41 |
+
}
|
42 |
+
|
43 |
+
div.video4 {
|
44 |
+
height: 200px;
|
45 |
+
}
|
46 |
+
|
47 |
+
div.stat {
|
48 |
+
height: 286px;
|
49 |
+
}
|
50 |
+
|
51 |
+
div.settings-wrapper {
|
52 |
+
display: none;
|
53 |
+
}
|
54 |
+
|
55 |
+
.submit {
|
56 |
+
display: inline-block;
|
57 |
+
padding: 10px 20px;
|
58 |
+
font-size: 16px;
|
59 |
+
font-weight: bold;
|
60 |
+
text-align: center;
|
61 |
+
text-decoration: none;
|
62 |
+
cursor: pointer;
|
63 |
+
border: var(--button-border-width) solid var(--button-primary-border-color);
|
64 |
+
background: var(--button-primary-background-fill);
|
65 |
+
color: var(--button-primary-text-color);
|
66 |
+
border-radius: 8px;
|
67 |
+
transition: all 0.3s ease;
|
68 |
+
}
|
69 |
+
|
70 |
+
.submit[disabled] {
|
71 |
+
cursor: not-allowed;
|
72 |
+
opacity: 0.6;
|
73 |
+
}
|
74 |
+
|
75 |
+
.submit:hover:not([disabled]) {
|
76 |
+
border-color: var(--button-primary-border-color-hover);
|
77 |
+
background: var(--button-primary-background-fill-hover);
|
78 |
+
color: var(--button-primary-text-color-hover);
|
79 |
+
}
|
80 |
+
|
81 |
+
.clear {
|
82 |
+
display: inline-block;
|
83 |
+
padding: 10px 20px;
|
84 |
+
font-size: 16px;
|
85 |
+
font-weight: bold;
|
86 |
+
text-align: center;
|
87 |
+
text-decoration: none;
|
88 |
+
cursor: pointer;
|
89 |
+
border-radius: 8px;
|
90 |
+
transition: all 0.3s ease;
|
91 |
+
}
|
92 |
+
|
93 |
+
.clear[disabled] {
|
94 |
+
cursor: not-allowed;
|
95 |
+
opacity: 0.6;
|
96 |
+
}
|
97 |
+
|
98 |
+
.submit:active:not([disabled]),
|
99 |
+
.clear:active:not([disabled]) {
|
100 |
+
transform: scale(0.98);
|
101 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CUDA-enabled PyTorch packages
|
2 |
+
torch==2.0.1+cu118
|
3 |
+
torchvision==0.15.2+cu118
|
4 |
+
torchaudio==2.0.2+cu118
|
5 |
+
-f https://download.pytorch.org/whl/torch_stable.html
|
6 |
+
|
7 |
+
# Core dependencies
|
8 |
+
gradio==4.38.1
|
9 |
+
gradio_client==1.1.0
|
10 |
+
|
11 |
+
# Additional dependencies
|
12 |
+
absl-py==2.1.0
|
13 |
+
aiofiles==23.2.1
|
14 |
+
altair==5.3.0
|
15 |
+
anyio==4.4.0
|
16 |
+
attrs==23.2.0
|
17 |
+
audioread==3.0.1
|
18 |
+
certifi==2024.7.4
|
19 |
+
charset-normalizer==3.3.2
|
20 |
+
click==8.1.7
|
21 |
+
decorator==4.4.2
|
22 |
+
fastapi==0.111.1
|
23 |
+
h5py==3.11.0
|
24 |
+
huggingface-hub==0.23.5
|
25 |
+
idna==3.7
|
26 |
+
Jinja2==3.1.4
|
27 |
+
joblib==1.4.2
|
28 |
+
jsonschema==4.23.0
|
29 |
+
kiwisolver==1.4.5
|
30 |
+
librosa==0.10.2.post1
|
31 |
+
MarkupSafe==2.1.5
|
32 |
+
matplotlib==3.9.1
|
33 |
+
numpy==1.26.4
|
34 |
+
pandas==2.2.2
|
35 |
+
Pillow==10.4.0
|
36 |
+
pydantic==2.8.2
|
37 |
+
python-multipart==0.0.9
|
38 |
+
pytz==2024.1
|
39 |
+
PyYAML==6.0.1
|
40 |
+
requests==2.32.3
|
41 |
+
scikit-learn==1.5.1
|
42 |
+
scipy==1.14.0
|
43 |
+
soundfile==0.12.1
|
44 |
+
starlette==0.37.2
|
45 |
+
tqdm==4.66.4
|
46 |
+
transformers==4.42.4
|
47 |
+
uvicorn==0.30.1
|
48 |
+
|
49 |
+
# Any other necessary dependencies
|
50 |
+
# Add your additional dependencies here
|
tabs/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
tabs/FACS_analysis.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from app.app_utils import preprocess_frame_and_predict_aus
|
6 |
+
|
7 |
+
# Define the AUs associated with stress, anxiety, and depression
|
8 |
+
STRESS_AUS = [4, 7, 17, 23, 24]
|
9 |
+
ANXIETY_AUS = [1, 2, 4, 5, 20]
|
10 |
+
DEPRESSION_AUS = [1, 4, 15, 17]
|
11 |
+
|
12 |
+
AU_DESCRIPTIONS = {
|
13 |
+
1: "Inner Brow Raiser",
|
14 |
+
2: "Outer Brow Raiser",
|
15 |
+
4: "Brow Lowerer",
|
16 |
+
5: "Upper Lid Raiser",
|
17 |
+
7: "Lid Tightener",
|
18 |
+
15: "Lip Corner Depressor",
|
19 |
+
17: "Chin Raiser",
|
20 |
+
20: "Lip Stretcher",
|
21 |
+
23: "Lip Tightener",
|
22 |
+
24: "Lip Pressor"
|
23 |
+
}
|
24 |
+
|
25 |
+
def normalize_score(score):
|
26 |
+
return max(0, min(1, (score + 1.5) / 3)) # Adjust the range as needed
|
27 |
+
|
28 |
+
def process_video_for_facs(video_path):
|
29 |
+
cap = cv2.VideoCapture(video_path)
|
30 |
+
frames = []
|
31 |
+
au_intensities_list = []
|
32 |
+
|
33 |
+
while True:
|
34 |
+
ret, frame = cap.read()
|
35 |
+
if not ret:
|
36 |
+
break
|
37 |
+
|
38 |
+
processed_frame, au_intensities, _ = preprocess_frame_and_predict_aus(frame)
|
39 |
+
|
40 |
+
if processed_frame is not None and au_intensities is not None:
|
41 |
+
frames.append(processed_frame)
|
42 |
+
au_intensities_list.append(au_intensities)
|
43 |
+
|
44 |
+
cap.release()
|
45 |
+
|
46 |
+
if not frames:
|
47 |
+
return None, None
|
48 |
+
|
49 |
+
# Calculate average AU intensities
|
50 |
+
avg_au_intensities = np.mean(au_intensities_list, axis=0)
|
51 |
+
|
52 |
+
# Calculate and normalize emotional state scores
|
53 |
+
stress_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in STRESS_AUS if au <= len(avg_au_intensities)]))
|
54 |
+
anxiety_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in ANXIETY_AUS if au <= len(avg_au_intensities)]))
|
55 |
+
depression_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in DEPRESSION_AUS if au <= len(avg_au_intensities)]))
|
56 |
+
|
57 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 10))
|
58 |
+
|
59 |
+
# Emotional state scores
|
60 |
+
states = ['Stress', 'Anxiety', 'Depression']
|
61 |
+
scores = [stress_score, anxiety_score, depression_score]
|
62 |
+
bars = ax1.bar(states, scores)
|
63 |
+
ax1.set_ylim(0, 1)
|
64 |
+
ax1.set_title('Emotional State Scores')
|
65 |
+
for bar in bars:
|
66 |
+
height = bar.get_height()
|
67 |
+
ax1.text(bar.get_x() + bar.get_width()/2., height,
|
68 |
+
f'{height:.2f}', ha='center', va='bottom')
|
69 |
+
|
70 |
+
# AU intensities
|
71 |
+
all_aus = sorted(set(STRESS_AUS + ANXIETY_AUS + DEPRESSION_AUS))
|
72 |
+
all_aus = [au for au in all_aus if au <= len(avg_au_intensities)]
|
73 |
+
au_labels = [f"AU{au}\n{AU_DESCRIPTIONS.get(au, '')}" for au in all_aus]
|
74 |
+
au_values = [avg_au_intensities[au-1] for au in all_aus]
|
75 |
+
ax2.bar(range(len(au_labels)), au_values)
|
76 |
+
ax2.set_xticks(range(len(au_labels)))
|
77 |
+
ax2.set_xticklabels(au_labels, rotation=45, ha='right')
|
78 |
+
ax2.set_ylim(0, 1)
|
79 |
+
ax2.set_title('Average Action Unit Intensities')
|
80 |
+
|
81 |
+
plt.tight_layout()
|
82 |
+
|
83 |
+
return frames[-1], fig # Return the last processed frame and the plot
|
84 |
+
|
85 |
+
def create_facs_analysis_tab():
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column(scale=1):
|
88 |
+
input_video = gr.Video()
|
89 |
+
gr.Examples(["./assets/videos/fitness.mp4"], inputs=[input_video])
|
90 |
+
with gr.Column(scale=2):
|
91 |
+
output_image = gr.Image(label="Processed Frame")
|
92 |
+
facs_chart = gr.Plot(label="FACS Analysis for SAD")
|
93 |
+
|
94 |
+
# Automatically trigger the analysis when a video is uploaded
|
95 |
+
input_video.change(
|
96 |
+
fn=process_video_for_facs,
|
97 |
+
inputs=[input_video],
|
98 |
+
outputs=[output_image, facs_chart]
|
99 |
+
)
|
100 |
+
|
101 |
+
return input_video, output_image, facs_chart
|
tabs/__pycache__/FACS_analysis.cpython-310.pyc
ADDED
Binary file (3.51 kB). View file
|
|
tabs/__pycache__/audio_emotion_recognition.cpython-310.pyc
ADDED
Binary file (6.69 kB). View file
|
|
tabs/__pycache__/blink_detection.cpython-310.pyc
ADDED
Binary file (3.07 kB). View file
|
|
tabs/__pycache__/body_movement_analysis.cpython-310.pyc
ADDED
Binary file (1.64 kB). View file
|
|