vitorcalvi commited on
Commit
1484b84
Β·
1 Parent(s): da21442
Files changed (2) hide show
  1. app.py +4 -0
  2. app/model.py +7 -4
app.py CHANGED
@@ -3,6 +3,10 @@ import gradio as gr
3
  from tabs.FACS_analysis import create_facs_analysis_tab
4
  from ui_components import CUSTOM_CSS, HEADER_HTML, DISCLAIMER_HTML
5
 
 
 
 
 
6
  # Define the tab structure
7
  TAB_STRUCTURE = [
8
  ("Visual Analysis", [
 
3
  from tabs.FACS_analysis import create_facs_analysis_tab
4
  from ui_components import CUSTOM_CSS, HEADER_HTML, DISCLAIMER_HTML
5
 
6
+ # Move load_example to a global scope
7
+ def load_example():
8
+ pass # Your logic here
9
+
10
  # Define the tab structure
11
  TAB_STRUCTURE = [
12
  ("Visual Analysis", [
app/model.py CHANGED
@@ -49,18 +49,21 @@ def load_models():
49
  # Load the static ResNet50 model
50
  pth_model_static = load_model(ResNet50, STATIC_MODEL_PATH)
51
 
52
- # Define LSTMPyTorch parameters (set the correct values for your model)
53
  input_size = 2048 # Example value: This should match the feature size from the ResNet50 output
54
  hidden_size = 512 # Example value: Adjust based on your LSTM architecture
55
  num_layers = 2 # Example value: Number of layers in the LSTM
56
  num_classes = 7 # Example value: Number of emotion classes
57
 
58
- # Load the dynamic LSTM model with the correct arguments
59
- pth_model_dynamic = load_model(LSTMPyTorch, DYNAMIC_MODEL_PATH, input_size, hidden_size, num_layers, num_classes)
 
 
 
 
60
 
61
  # Initialize GradCAM
62
  cam = GradCAM(model=pth_model_static, target_layers=[pth_model_static.resnet.layer4])
63
 
64
  return pth_model_static, pth_model_dynamic, cam
65
 
66
- # Optionally, additional utility functions for model processing can be added here.
 
49
  # Load the static ResNet50 model
50
  pth_model_static = load_model(ResNet50, STATIC_MODEL_PATH)
51
 
52
+ # Define LSTMPyTorch parameters
53
  input_size = 2048 # Example value: This should match the feature size from the ResNet50 output
54
  hidden_size = 512 # Example value: Adjust based on your LSTM architecture
55
  num_layers = 2 # Example value: Number of layers in the LSTM
56
  num_classes = 7 # Example value: Number of emotion classes
57
 
58
+ # Load the dynamic LSTM model (if available)
59
+ pth_model_dynamic = None
60
+ if os.path.exists(DYNAMIC_MODEL_PATH):
61
+ pth_model_dynamic = load_model(LSTMPyTorch, DYNAMIC_MODEL_PATH, input_size, hidden_size, num_layers, num_classes)
62
+ else:
63
+ logger.error(f"Dynamic model file not found: {DYNAMIC_MODEL_PATH}")
64
 
65
  # Initialize GradCAM
66
  cam = GradCAM(model=pth_model_static, target_layers=[pth_model_static.resnet.layer4])
67
 
68
  return pth_model_static, pth_model_dynamic, cam
69