Spaces:
Runtime error
Runtime error
Commit
Β·
27ef047
1
Parent(s):
5164deb
- .DS_Store +0 -0
- app.py +3 -3
- app/model.py +14 -52
- tabs/FACS_analysis.py +16 -46
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
app.py
CHANGED
|
@@ -14,7 +14,7 @@ TAB_STRUCTURE = [
|
|
| 14 |
def create_demo():
|
| 15 |
# Import model-related functions here to ensure spaces is imported first
|
| 16 |
from app.model import load_models
|
| 17 |
-
|
| 18 |
# Load models outside of the Gradio blocks
|
| 19 |
pth_model_static, pth_model_dynamic, cam = load_models()
|
| 20 |
|
|
@@ -28,11 +28,11 @@ def create_demo():
|
|
| 28 |
with gr.Tab(sub_tab):
|
| 29 |
create_fn(pth_model_static, pth_model_dynamic, cam)
|
| 30 |
gr.HTML(DISCLAIMER_HTML)
|
| 31 |
-
|
| 32 |
return demo
|
| 33 |
|
| 34 |
# Create the demo instance
|
| 35 |
demo = create_demo()
|
| 36 |
|
| 37 |
if __name__ == "__main__":
|
| 38 |
-
demo.launch()
|
|
|
|
| 14 |
def create_demo():
|
| 15 |
# Import model-related functions here to ensure spaces is imported first
|
| 16 |
from app.model import load_models
|
| 17 |
+
|
| 18 |
# Load models outside of the Gradio blocks
|
| 19 |
pth_model_static, pth_model_dynamic, cam = load_models()
|
| 20 |
|
|
|
|
| 28 |
with gr.Tab(sub_tab):
|
| 29 |
create_fn(pth_model_static, pth_model_dynamic, cam)
|
| 30 |
gr.HTML(DISCLAIMER_HTML)
|
| 31 |
+
|
| 32 |
return demo
|
| 33 |
|
| 34 |
# Create the demo instance
|
| 35 |
demo = create_demo()
|
| 36 |
|
| 37 |
if __name__ == "__main__":
|
| 38 |
+
demo.launch()
|
app/model.py
CHANGED
|
@@ -20,59 +20,21 @@ STATIC_MODEL_PATH = 'assets/models/FER_static_ResNet50_AffectNet.pt'
|
|
| 20 |
DYNAMIC_MODEL_PATH = 'assets/models/FER_dynamic_LSTM.pt'
|
| 21 |
|
| 22 |
def load_model(model_class, model_path, *args, **kwargs):
|
| 23 |
-
model = model_class(*args, **kwargs)
|
| 24 |
if os.path.exists(model_path):
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
except Exception as e:
|
| 30 |
-
logger.error(f"Error loading model from {model_path}: {str(e)}")
|
| 31 |
-
logger.info("Initializing with random weights.")
|
| 32 |
else:
|
| 33 |
-
logger.
|
|
|
|
| 34 |
return model
|
| 35 |
|
| 36 |
-
|
| 37 |
-
pth_model_static = load_model(ResNet50, STATIC_MODEL_PATH
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
target_layers = [pth_model_static.resnet.layer4[-1]]
|
| 44 |
-
cam = GradCAM(model=pth_model_static, target_layers=target_layers)
|
| 45 |
-
|
| 46 |
-
# Define image preprocessing
|
| 47 |
-
pth_transform = transforms.Compose([
|
| 48 |
-
transforms.Resize((224, 224)),
|
| 49 |
-
transforms.ToTensor(),
|
| 50 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 51 |
-
])
|
| 52 |
-
|
| 53 |
-
def pth_processing(img):
|
| 54 |
-
img = pth_transform(img).unsqueeze(0).to(device)
|
| 55 |
-
return img
|
| 56 |
-
|
| 57 |
-
def predict_emotion(img):
|
| 58 |
-
with torch.no_grad():
|
| 59 |
-
output = pth_model_static(pth_processing(img))
|
| 60 |
-
_, predicted = torch.max(output, 1)
|
| 61 |
-
return predicted.item()
|
| 62 |
-
|
| 63 |
-
def get_emotion_probabilities(img):
|
| 64 |
-
with torch.no_grad():
|
| 65 |
-
output = nn.functional.softmax(pth_model_static(pth_processing(img)), dim=1)
|
| 66 |
-
return output.squeeze().cpu().numpy()
|
| 67 |
-
|
| 68 |
-
def generate_cam(img):
|
| 69 |
-
input_tensor = pth_processing(img)
|
| 70 |
-
targets = [ClassifierOutputTarget(predict_emotion(img))]
|
| 71 |
-
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
|
| 72 |
-
return grayscale_cam[0, :]
|
| 73 |
-
|
| 74 |
-
# Add any other necessary functions or variables here
|
| 75 |
-
|
| 76 |
-
if __name__ == "__main__":
|
| 77 |
-
logger.info("Model initialization complete.")
|
| 78 |
-
# You can add some test code here to verify everything is working correctly
|
|
|
|
| 20 |
DYNAMIC_MODEL_PATH = 'assets/models/FER_dynamic_LSTM.pt'
|
| 21 |
|
| 22 |
def load_model(model_class, model_path, *args, **kwargs):
|
| 23 |
+
model = model_class(*args, **kwargs)
|
| 24 |
if os.path.exists(model_path):
|
| 25 |
+
model.load_state_dict(torch.load(model_path, map_location=device), strict=False)
|
| 26 |
+
model.to(device)
|
| 27 |
+
model.eval()
|
| 28 |
+
logger.info(f"Loaded model from {model_path}")
|
|
|
|
|
|
|
|
|
|
| 29 |
else:
|
| 30 |
+
logger.error(f"Model file not found: {model_path}")
|
| 31 |
+
model = model.to(device)
|
| 32 |
return model
|
| 33 |
|
| 34 |
+
def load_models():
|
| 35 |
+
pth_model_static = load_model(ResNet50, STATIC_MODEL_PATH)
|
| 36 |
+
pth_model_dynamic = load_model(LSTMPyTorch, DYNAMIC_MODEL_PATH)
|
| 37 |
+
|
| 38 |
+
cam = GradCAM(model=pth_model_static, target_layers=[pth_model_static.layer4], use_cuda=device == 'cuda')
|
| 39 |
+
|
| 40 |
+
return pth_model_static, pth_model_dynamic, cam
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/FACS_analysis.py
CHANGED
|
@@ -1,55 +1,25 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import cv2
|
| 3 |
-
import numpy as np
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
-
from app.app_utils import preprocess_frame_and_predict_aus
|
| 6 |
-
|
| 7 |
-
# Define the AUs associated with stress, anxiety, and depression
|
| 8 |
-
STRESS_AUS = [4, 7, 17, 23, 24]
|
| 9 |
-
ANXIETY_AUS = [1, 2, 4, 5, 20]
|
| 10 |
-
DEPRESSION_AUS = [1, 4, 15, 17]
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
AU_DESCRIPTIONS = {
|
| 13 |
-
1: "Inner Brow Raiser",
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
5: "Upper Lid Raiser",
|
| 17 |
-
7: "Lid Tightener",
|
| 18 |
-
15: "Lip Corner Depressor",
|
| 19 |
-
17: "Chin Raiser",
|
| 20 |
-
20: "Lip Stretcher",
|
| 21 |
-
23: "Lip Tightener",
|
| 22 |
-
24: "Lip Pressor"
|
| 23 |
}
|
| 24 |
|
| 25 |
-
def
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
def process_video_for_facs(video_path):
|
| 29 |
-
cap = cv2.VideoCapture(video_path)
|
| 30 |
-
frames = []
|
| 31 |
-
au_intensities_list = []
|
| 32 |
-
|
| 33 |
-
while True:
|
| 34 |
-
ret, frame = cap.read()
|
| 35 |
-
if not ret:
|
| 36 |
-
break
|
| 37 |
-
|
| 38 |
-
processed_frame, au_intensities, _ = preprocess_frame_and_predict_aus(frame)
|
| 39 |
-
|
| 40 |
-
if processed_frame is not None and au_intensities is not None:
|
| 41 |
-
frames.append(processed_frame)
|
| 42 |
-
au_intensities_list.append(au_intensities)
|
| 43 |
-
|
| 44 |
-
cap.release()
|
| 45 |
-
|
| 46 |
-
if not frames:
|
| 47 |
-
return None, None
|
| 48 |
-
|
| 49 |
-
# Calculate average AU intensities
|
| 50 |
-
avg_au_intensities = np.mean(au_intensities_list, axis=0)
|
| 51 |
-
|
| 52 |
-
# Calculate and normalize emotional state scores
|
| 53 |
stress_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in STRESS_AUS if au <= len(avg_au_intensities)]))
|
| 54 |
anxiety_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in ANXIETY_AUS if au <= len(avg_au_intensities)]))
|
| 55 |
depression_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in DEPRESSION_AUS if au <= len(avg_au_intensities)]))
|
|
@@ -82,7 +52,7 @@ def process_video_for_facs(video_path):
|
|
| 82 |
|
| 83 |
return frames[-1], fig # Return the last processed frame and the plot
|
| 84 |
|
| 85 |
-
def create_facs_analysis_tab():
|
| 86 |
with gr.Row():
|
| 87 |
with gr.Column(scale=1):
|
| 88 |
input_video = gr.Video()
|
|
|
|
| 1 |
+
from gradio import Interface
|
| 2 |
+
from app.app_utils import preprocess_frame_and_predict_aus
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
| 4 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Define stress, anxiety, and depression AU mappings
|
| 7 |
+
STRESS_AUS = [1, 2, 4]
|
| 8 |
+
ANXIETY_AUS = [5, 9, 14]
|
| 9 |
+
DEPRESSION_AUS = [15, 17, 20]
|
| 10 |
AU_DESCRIPTIONS = {
|
| 11 |
+
1: "Inner Brow Raiser", 2: "Outer Brow Raiser", 4: "Brow Lowerer",
|
| 12 |
+
5: "Upper Lid Raiser", 9: "Nose Wrinkler", 14: "Dimpler",
|
| 13 |
+
15: "Lip Corner Depressor", 17: "Chin Raiser", 20: "Lip Stretcher"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
}
|
| 15 |
|
| 16 |
+
def process_video_for_facs(video):
|
| 17 |
+
frames, avg_au_intensities = preprocess_frame_and_predict_aus(video)
|
| 18 |
+
|
| 19 |
+
# Calculate emotional state scores
|
| 20 |
+
def normalize_score(score):
|
| 21 |
+
return max(0, min(1, score))
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
stress_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in STRESS_AUS if au <= len(avg_au_intensities)]))
|
| 24 |
anxiety_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in ANXIETY_AUS if au <= len(avg_au_intensities)]))
|
| 25 |
depression_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in DEPRESSION_AUS if au <= len(avg_au_intensities)]))
|
|
|
|
| 52 |
|
| 53 |
return frames[-1], fig # Return the last processed frame and the plot
|
| 54 |
|
| 55 |
+
def create_facs_analysis_tab(pth_model_static, pth_model_dynamic, cam):
|
| 56 |
with gr.Row():
|
| 57 |
with gr.Column(scale=1):
|
| 58 |
input_video = gr.Video()
|