Spaces:
Runtime error
Runtime error
Commit
Β·
27ef047
1
Parent(s):
5164deb
- .DS_Store +0 -0
- app.py +3 -3
- app/model.py +14 -52
- tabs/FACS_analysis.py +16 -46
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -14,7 +14,7 @@ TAB_STRUCTURE = [
|
|
14 |
def create_demo():
|
15 |
# Import model-related functions here to ensure spaces is imported first
|
16 |
from app.model import load_models
|
17 |
-
|
18 |
# Load models outside of the Gradio blocks
|
19 |
pth_model_static, pth_model_dynamic, cam = load_models()
|
20 |
|
@@ -28,11 +28,11 @@ def create_demo():
|
|
28 |
with gr.Tab(sub_tab):
|
29 |
create_fn(pth_model_static, pth_model_dynamic, cam)
|
30 |
gr.HTML(DISCLAIMER_HTML)
|
31 |
-
|
32 |
return demo
|
33 |
|
34 |
# Create the demo instance
|
35 |
demo = create_demo()
|
36 |
|
37 |
if __name__ == "__main__":
|
38 |
-
demo.launch()
|
|
|
14 |
def create_demo():
|
15 |
# Import model-related functions here to ensure spaces is imported first
|
16 |
from app.model import load_models
|
17 |
+
|
18 |
# Load models outside of the Gradio blocks
|
19 |
pth_model_static, pth_model_dynamic, cam = load_models()
|
20 |
|
|
|
28 |
with gr.Tab(sub_tab):
|
29 |
create_fn(pth_model_static, pth_model_dynamic, cam)
|
30 |
gr.HTML(DISCLAIMER_HTML)
|
31 |
+
|
32 |
return demo
|
33 |
|
34 |
# Create the demo instance
|
35 |
demo = create_demo()
|
36 |
|
37 |
if __name__ == "__main__":
|
38 |
+
demo.launch()
|
app/model.py
CHANGED
@@ -20,59 +20,21 @@ STATIC_MODEL_PATH = 'assets/models/FER_static_ResNet50_AffectNet.pt'
|
|
20 |
DYNAMIC_MODEL_PATH = 'assets/models/FER_dynamic_LSTM.pt'
|
21 |
|
22 |
def load_model(model_class, model_path, *args, **kwargs):
|
23 |
-
model = model_class(*args, **kwargs)
|
24 |
if os.path.exists(model_path):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
except Exception as e:
|
30 |
-
logger.error(f"Error loading model from {model_path}: {str(e)}")
|
31 |
-
logger.info("Initializing with random weights.")
|
32 |
else:
|
33 |
-
logger.
|
|
|
34 |
return model
|
35 |
|
36 |
-
|
37 |
-
pth_model_static = load_model(ResNet50, STATIC_MODEL_PATH
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
target_layers = [pth_model_static.resnet.layer4[-1]]
|
44 |
-
cam = GradCAM(model=pth_model_static, target_layers=target_layers)
|
45 |
-
|
46 |
-
# Define image preprocessing
|
47 |
-
pth_transform = transforms.Compose([
|
48 |
-
transforms.Resize((224, 224)),
|
49 |
-
transforms.ToTensor(),
|
50 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
51 |
-
])
|
52 |
-
|
53 |
-
def pth_processing(img):
|
54 |
-
img = pth_transform(img).unsqueeze(0).to(device)
|
55 |
-
return img
|
56 |
-
|
57 |
-
def predict_emotion(img):
|
58 |
-
with torch.no_grad():
|
59 |
-
output = pth_model_static(pth_processing(img))
|
60 |
-
_, predicted = torch.max(output, 1)
|
61 |
-
return predicted.item()
|
62 |
-
|
63 |
-
def get_emotion_probabilities(img):
|
64 |
-
with torch.no_grad():
|
65 |
-
output = nn.functional.softmax(pth_model_static(pth_processing(img)), dim=1)
|
66 |
-
return output.squeeze().cpu().numpy()
|
67 |
-
|
68 |
-
def generate_cam(img):
|
69 |
-
input_tensor = pth_processing(img)
|
70 |
-
targets = [ClassifierOutputTarget(predict_emotion(img))]
|
71 |
-
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
|
72 |
-
return grayscale_cam[0, :]
|
73 |
-
|
74 |
-
# Add any other necessary functions or variables here
|
75 |
-
|
76 |
-
if __name__ == "__main__":
|
77 |
-
logger.info("Model initialization complete.")
|
78 |
-
# You can add some test code here to verify everything is working correctly
|
|
|
20 |
DYNAMIC_MODEL_PATH = 'assets/models/FER_dynamic_LSTM.pt'
|
21 |
|
22 |
def load_model(model_class, model_path, *args, **kwargs):
|
23 |
+
model = model_class(*args, **kwargs)
|
24 |
if os.path.exists(model_path):
|
25 |
+
model.load_state_dict(torch.load(model_path, map_location=device), strict=False)
|
26 |
+
model.to(device)
|
27 |
+
model.eval()
|
28 |
+
logger.info(f"Loaded model from {model_path}")
|
|
|
|
|
|
|
29 |
else:
|
30 |
+
logger.error(f"Model file not found: {model_path}")
|
31 |
+
model = model.to(device)
|
32 |
return model
|
33 |
|
34 |
+
def load_models():
|
35 |
+
pth_model_static = load_model(ResNet50, STATIC_MODEL_PATH)
|
36 |
+
pth_model_dynamic = load_model(LSTMPyTorch, DYNAMIC_MODEL_PATH)
|
37 |
+
|
38 |
+
cam = GradCAM(model=pth_model_static, target_layers=[pth_model_static.layer4], use_cuda=device == 'cuda')
|
39 |
+
|
40 |
+
return pth_model_static, pth_model_dynamic, cam
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/FACS_analysis.py
CHANGED
@@ -1,55 +1,25 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
-
from app.app_utils import preprocess_frame_and_predict_aus
|
6 |
-
|
7 |
-
# Define the AUs associated with stress, anxiety, and depression
|
8 |
-
STRESS_AUS = [4, 7, 17, 23, 24]
|
9 |
-
ANXIETY_AUS = [1, 2, 4, 5, 20]
|
10 |
-
DEPRESSION_AUS = [1, 4, 15, 17]
|
11 |
|
|
|
|
|
|
|
|
|
12 |
AU_DESCRIPTIONS = {
|
13 |
-
1: "Inner Brow Raiser",
|
14 |
-
|
15 |
-
|
16 |
-
5: "Upper Lid Raiser",
|
17 |
-
7: "Lid Tightener",
|
18 |
-
15: "Lip Corner Depressor",
|
19 |
-
17: "Chin Raiser",
|
20 |
-
20: "Lip Stretcher",
|
21 |
-
23: "Lip Tightener",
|
22 |
-
24: "Lip Pressor"
|
23 |
}
|
24 |
|
25 |
-
def
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
def process_video_for_facs(video_path):
|
29 |
-
cap = cv2.VideoCapture(video_path)
|
30 |
-
frames = []
|
31 |
-
au_intensities_list = []
|
32 |
-
|
33 |
-
while True:
|
34 |
-
ret, frame = cap.read()
|
35 |
-
if not ret:
|
36 |
-
break
|
37 |
-
|
38 |
-
processed_frame, au_intensities, _ = preprocess_frame_and_predict_aus(frame)
|
39 |
-
|
40 |
-
if processed_frame is not None and au_intensities is not None:
|
41 |
-
frames.append(processed_frame)
|
42 |
-
au_intensities_list.append(au_intensities)
|
43 |
-
|
44 |
-
cap.release()
|
45 |
-
|
46 |
-
if not frames:
|
47 |
-
return None, None
|
48 |
-
|
49 |
-
# Calculate average AU intensities
|
50 |
-
avg_au_intensities = np.mean(au_intensities_list, axis=0)
|
51 |
-
|
52 |
-
# Calculate and normalize emotional state scores
|
53 |
stress_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in STRESS_AUS if au <= len(avg_au_intensities)]))
|
54 |
anxiety_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in ANXIETY_AUS if au <= len(avg_au_intensities)]))
|
55 |
depression_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in DEPRESSION_AUS if au <= len(avg_au_intensities)]))
|
@@ -82,7 +52,7 @@ def process_video_for_facs(video_path):
|
|
82 |
|
83 |
return frames[-1], fig # Return the last processed frame and the plot
|
84 |
|
85 |
-
def create_facs_analysis_tab():
|
86 |
with gr.Row():
|
87 |
with gr.Column(scale=1):
|
88 |
input_video = gr.Video()
|
|
|
1 |
+
from gradio import Interface
|
2 |
+
from app.app_utils import preprocess_frame_and_predict_aus
|
3 |
import gradio as gr
|
|
|
|
|
4 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Define stress, anxiety, and depression AU mappings
|
7 |
+
STRESS_AUS = [1, 2, 4]
|
8 |
+
ANXIETY_AUS = [5, 9, 14]
|
9 |
+
DEPRESSION_AUS = [15, 17, 20]
|
10 |
AU_DESCRIPTIONS = {
|
11 |
+
1: "Inner Brow Raiser", 2: "Outer Brow Raiser", 4: "Brow Lowerer",
|
12 |
+
5: "Upper Lid Raiser", 9: "Nose Wrinkler", 14: "Dimpler",
|
13 |
+
15: "Lip Corner Depressor", 17: "Chin Raiser", 20: "Lip Stretcher"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
}
|
15 |
|
16 |
+
def process_video_for_facs(video):
|
17 |
+
frames, avg_au_intensities = preprocess_frame_and_predict_aus(video)
|
18 |
+
|
19 |
+
# Calculate emotional state scores
|
20 |
+
def normalize_score(score):
|
21 |
+
return max(0, min(1, score))
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
stress_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in STRESS_AUS if au <= len(avg_au_intensities)]))
|
24 |
anxiety_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in ANXIETY_AUS if au <= len(avg_au_intensities)]))
|
25 |
depression_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in DEPRESSION_AUS if au <= len(avg_au_intensities)]))
|
|
|
52 |
|
53 |
return frames[-1], fig # Return the last processed frame and the plot
|
54 |
|
55 |
+
def create_facs_analysis_tab(pth_model_static, pth_model_dynamic, cam):
|
56 |
with gr.Row():
|
57 |
with gr.Column(scale=1):
|
58 |
input_video = gr.Video()
|