vivek123eq2858 commited on
Commit
f609dda
·
1 Parent(s): 4e32e3f

Initial commit: Upload Gesture AI to Hugging Face

Browse files
Files changed (2) hide show
  1. app.py +54 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ import numpy as np
4
+ from tensorflow.keras.models import load_model
5
+ import mediapipe as mp
6
+
7
+ model = load_model('gesture_model.h5')
8
+ actions = ['I', 'help', 'need', 'sleep', 'angry', 'urgent']
9
+ threshold = 0.8
10
+
11
+ mp_holistic = mp.solutions.holistic
12
+
13
+ def extract_keypoints(results):
14
+ pose = np.array([[res.x, res.y, res.z] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33 * 3)
15
+ lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(21 * 3)
16
+ rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(21 * 3)
17
+ return np.concatenate([pose, lh, rh])
18
+
19
+ def predict_gesture(video_path):
20
+ cap = cv2.VideoCapture(video_path)
21
+ sequence = []
22
+ sentence = []
23
+
24
+ with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
25
+ while cap.isOpened():
26
+ ret, frame = cap.read()
27
+ if not ret:
28
+ break
29
+
30
+ image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
31
+ results = holistic.process(image)
32
+ keypoints = extract_keypoints(results)
33
+ sequence.append(keypoints)
34
+ sequence = sequence[-30:]
35
+
36
+ if len(sequence) == 30:
37
+ res = model.predict(np.expand_dims(sequence, axis=0))[0]
38
+ if res[np.argmax(res)] > threshold:
39
+ action = actions[np.argmax(res)]
40
+ if not sentence or sentence[-1] != action:
41
+ sentence.append(action)
42
+
43
+ cap.release()
44
+ return ' '.join(sentence)
45
+
46
+ iface = gr.Interface(
47
+ fn=predict_gesture,
48
+ inputs=gr.Video(label="Upload your gesture video"),
49
+ outputs="text",
50
+ title="Gesture Recognition AI",
51
+ description="Upload a short gesture video (e.g., showing 'I need help') and get the recognized sentence."
52
+ )
53
+
54
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ tensorflow
2
+ opencv-python
3
+ mediapipe
4
+ gradio
5
+ numpy