Spaces:
Sleeping
Sleeping
vivek123eq2858
commited on
Commit
·
f609dda
1
Parent(s):
4e32e3f
Initial commit: Upload Gesture AI to Hugging Face
Browse files- app.py +54 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
import mediapipe as mp
|
6 |
+
|
7 |
+
model = load_model('gesture_model.h5')
|
8 |
+
actions = ['I', 'help', 'need', 'sleep', 'angry', 'urgent']
|
9 |
+
threshold = 0.8
|
10 |
+
|
11 |
+
mp_holistic = mp.solutions.holistic
|
12 |
+
|
13 |
+
def extract_keypoints(results):
|
14 |
+
pose = np.array([[res.x, res.y, res.z] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33 * 3)
|
15 |
+
lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(21 * 3)
|
16 |
+
rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(21 * 3)
|
17 |
+
return np.concatenate([pose, lh, rh])
|
18 |
+
|
19 |
+
def predict_gesture(video_path):
|
20 |
+
cap = cv2.VideoCapture(video_path)
|
21 |
+
sequence = []
|
22 |
+
sentence = []
|
23 |
+
|
24 |
+
with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
|
25 |
+
while cap.isOpened():
|
26 |
+
ret, frame = cap.read()
|
27 |
+
if not ret:
|
28 |
+
break
|
29 |
+
|
30 |
+
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
31 |
+
results = holistic.process(image)
|
32 |
+
keypoints = extract_keypoints(results)
|
33 |
+
sequence.append(keypoints)
|
34 |
+
sequence = sequence[-30:]
|
35 |
+
|
36 |
+
if len(sequence) == 30:
|
37 |
+
res = model.predict(np.expand_dims(sequence, axis=0))[0]
|
38 |
+
if res[np.argmax(res)] > threshold:
|
39 |
+
action = actions[np.argmax(res)]
|
40 |
+
if not sentence or sentence[-1] != action:
|
41 |
+
sentence.append(action)
|
42 |
+
|
43 |
+
cap.release()
|
44 |
+
return ' '.join(sentence)
|
45 |
+
|
46 |
+
iface = gr.Interface(
|
47 |
+
fn=predict_gesture,
|
48 |
+
inputs=gr.Video(label="Upload your gesture video"),
|
49 |
+
outputs="text",
|
50 |
+
title="Gesture Recognition AI",
|
51 |
+
description="Upload a short gesture video (e.g., showing 'I need help') and get the recognized sentence."
|
52 |
+
)
|
53 |
+
|
54 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
opencv-python
|
3 |
+
mediapipe
|
4 |
+
gradio
|
5 |
+
numpy
|