|
"""Magnitude charts.""" |
|
|
|
import vizro.models as vm |
|
|
|
from pages._pages_utils import PAGE_GRID, make_code_clipboard_from_py_file |
|
from pages.examples import bar, magnitude_column, paired_bar, paired_column, parallel_coordinates, radar |
|
|
|
bar_page = vm.Page( |
|
title="Bar", |
|
path="magnitude/bar", |
|
layout=vm.Layout(grid=PAGE_GRID), |
|
components=[ |
|
vm.Card( |
|
text=""" |
|
|
|
#### What is a bar chart? |
|
|
|
A bar chart displays bars with lengths proportional to the values they represent. One axis shows the |
|
categories to compare, and the other provides a value scale starting from zero. |
|
|
|
|
|
|
|
#### When should I use it? |
|
|
|
Use a bar chart to help your audience compare sizes and identify patterns in categorical data, such as |
|
**how many?** in each category. Arrange the bars in any order to fit the message you want to emphasize. |
|
Ensure clear labeling, especially with many bars, and consider using a legend or abbreviations with fuller |
|
descriptions below. |
|
""" |
|
), |
|
vm.Graph(figure=bar.fig), |
|
vm.Tabs( |
|
tabs=[ |
|
vm.Container( |
|
title="Vizro dashboard", components=[make_code_clipboard_from_py_file("bar.py", mode="vizro")] |
|
), |
|
vm.Container( |
|
title="Plotly figure", |
|
components=[make_code_clipboard_from_py_file("bar.py", mode="plotly")], |
|
), |
|
] |
|
), |
|
], |
|
) |
|
|
|
|
|
|
|
column_page = vm.Page( |
|
id="magnitude-column", |
|
path="magnitude/column", |
|
title="Column", |
|
layout=vm.Layout(grid=PAGE_GRID), |
|
components=[ |
|
vm.Card( |
|
text=""" |
|
#### What is a column chart? |
|
|
|
A column chart is a type of bar chart where data is represented with vertical columns. Each |
|
column's height corresponds to the value it represents, with the y-axis starting from zero. |
|
|
|
|
|
|
|
#### When should I use it? |
|
|
|
Use a column chart to compare sizes and identify patterns in categorical data, including time-based |
|
data. Arrange columns to fit your message, and for time-based data, order them chronologically to |
|
highlight trends. Ensure clear labeling, especially with many categories, and consider using a legend |
|
or abbreviations with fuller descriptions below. |
|
""" |
|
), |
|
vm.Graph(figure=magnitude_column.fig), |
|
vm.Tabs( |
|
tabs=[ |
|
vm.Container( |
|
title="Vizro dashboard", |
|
components=[make_code_clipboard_from_py_file("magnitude_column.py", mode="vizro")], |
|
), |
|
vm.Container( |
|
title="Plotly figure", |
|
components=[make_code_clipboard_from_py_file("magnitude_column.py", mode="plotly")], |
|
), |
|
] |
|
), |
|
], |
|
) |
|
|
|
paired_bar_page = vm.Page( |
|
title="Paired bar", |
|
path="magnitude/paired-bar", |
|
layout=vm.Layout(grid=PAGE_GRID), |
|
components=[ |
|
vm.Card( |
|
text=""" |
|
|
|
#### What is a paired bar chart? |
|
|
|
A paired bar chart, also known as a grouped bar chart, displays bars grouped together in pairs for each |
|
category, with the lengths of the bars proportional to the values they represent. One axis shows the |
|
categories to compare, while the other provides a value scale starting from zero. |
|
|
|
|
|
|
|
#### When should I use it? |
|
|
|
Use a paired bar chart to compare multiple sets of data within the same categories. This type of chart is |
|
particularly useful for highlighting differences and similarities between groups, such as **how many?** in |
|
each category across different groups. Arrange the paired bars clearly to fit the message you want to |
|
emphasize. Ensure clear labeling, especially with many bars, and consider using a legend or abbreviations |
|
with fuller descriptions below. |
|
""" |
|
), |
|
vm.Graph(figure=paired_bar.fig), |
|
vm.Tabs( |
|
tabs=[ |
|
vm.Container( |
|
title="Vizro dashboard", |
|
components=[make_code_clipboard_from_py_file("paired_bar.py", mode="vizro")], |
|
), |
|
vm.Container( |
|
title="Plotly figure", |
|
components=[make_code_clipboard_from_py_file("paired_bar.py", mode="plotly")], |
|
), |
|
] |
|
), |
|
], |
|
) |
|
|
|
paired_column_page = vm.Page( |
|
title="Paired column", |
|
path="magnitude/paired-column", |
|
layout=vm.Layout(grid=PAGE_GRID), |
|
components=[ |
|
vm.Card( |
|
text=""" |
|
|
|
#### What is a paired column chart? |
|
|
|
A paired column chart, also known as a grouped column chart, displays columns grouped together in pairs for |
|
each category, with the heights of the columns proportional to the values they represent. One axis shows the |
|
categories to compare, while the other provides a value scale starting from zero. |
|
|
|
|
|
|
|
#### When should I use it? |
|
|
|
Use a paired column chart to compare multiple sets of data within the same categories. This type of chart is |
|
particularly useful for highlighting differences and similarities between groups, such as **how many?** in |
|
each category across different groups. Arrange the paired columns clearly to fit the message you want to |
|
emphasize. Ensure clear labeling, especially with many columns, and consider using a legend or abbreviations |
|
with fuller descriptions below. |
|
""" |
|
), |
|
vm.Graph(figure=paired_column.fig), |
|
vm.Tabs( |
|
tabs=[ |
|
vm.Container( |
|
title="Vizro dashboard", |
|
components=[make_code_clipboard_from_py_file("paired_column.py", mode="vizro")], |
|
), |
|
vm.Container( |
|
title="Plotly figure", |
|
components=[make_code_clipboard_from_py_file("paired_column.py", mode="plotly")], |
|
), |
|
] |
|
), |
|
], |
|
) |
|
|
|
parallel_coordinates_page = vm.Page( |
|
path="magnitude/parallel-coordinates ", |
|
title="Parallel coordinates", |
|
layout=vm.Layout(grid=PAGE_GRID), |
|
components=[ |
|
vm.Card( |
|
text=""" |
|
#### What is a parallel coordinates chart? |
|
|
|
A parallel coordinates chart is a type of data visualization used to plot multivariate numerical data. |
|
Each axis represents a different variable, and lines connecting the axes indicate the values of |
|
individual data points across these variables. |
|
|
|
|
|
|
|
#### When should I use it? |
|
|
|
Use a parallel coordinates chart to explore relationships and patterns in high-dimensional data. |
|
This chart is particularly useful for comparing multiple variables simultaneously and identifying |
|
correlations or clusters within the data. Ensure clear labeling of each axis and consider using color |
|
coding to distinguish between different data points or groups. |
|
""" |
|
), |
|
vm.Graph(figure=parallel_coordinates.fig), |
|
vm.Tabs( |
|
tabs=[ |
|
vm.Container( |
|
title="Vizro dashboard", |
|
components=[make_code_clipboard_from_py_file("parallel_coordinates.py", mode="vizro")], |
|
), |
|
vm.Container( |
|
title="Plotly figure", |
|
components=[make_code_clipboard_from_py_file("parallel_coordinates.py", mode="plotly")], |
|
), |
|
] |
|
), |
|
], |
|
) |
|
|
|
radar_page = vm.Page( |
|
path="magnitude/radar", |
|
title="Radar", |
|
layout=vm.Layout(grid=PAGE_GRID), |
|
components=[ |
|
vm.Card( |
|
text=""" |
|
#### What is a radar chart? |
|
A radar chart, also known as a spider plot or star plot, is a type of data visualization |
|
used to display multivariate data. It consists of three or more variables represented |
|
on axes that originate from the same central point. |
|
|
|
#### When should I use it? |
|
Use a radar chart to compare performance or characteristics across multiple variables. |
|
The chart effectively highlights strengths, weaknesses, patterns, and outliers. |
|
To maintain clarity, use consistent scales for all axes and clearly mark labels and data points. |
|
""" |
|
), |
|
vm.Graph(figure=radar.fig), |
|
vm.Tabs( |
|
tabs=[ |
|
vm.Container( |
|
title="Vizro dashboard", components=[make_code_clipboard_from_py_file("radar.py", mode="vizro")] |
|
), |
|
vm.Container( |
|
title="Plotly figure", |
|
components=[make_code_clipboard_from_py_file("radar.py", mode="plotly")], |
|
), |
|
] |
|
), |
|
], |
|
) |
|
|
|
pages = [bar_page, column_page, paired_bar_page, paired_column_page, parallel_coordinates_page, radar_page] |
|
|