File size: 5,604 Bytes
4d9dd77
cb0039e
 
 
 
f5b6e30
cb0039e
4d9dd77
cb0039e
f5b6e30
 
cb0039e
4d9dd77
f5b6e30
 
4d9dd77
f5b6e30
cb0039e
 
 
 
 
 
a055f19
cb0039e
a055f19
cb0039e
 
fe3337c
fab7e8b
 
 
fe3337c
fab7e8b
 
90fbaa4
fab7e8b
 
 
 
fe3337c
 
 
fab7e8b
 
 
 
fe3337c
fab7e8b
fe3337c
 
 
 
f5b6e30
 
 
cb0039e
f5b6e30
 
cb0039e
f5b6e30
 
 
 
 
 
 
 
 
 
 
 
 
 
cb0039e
67c7e19
f5b6e30
 
67c7e19
 
f5b6e30
67c7e19
 
 
 
 
 
 
 
 
4a5eb39
 
 
 
67c7e19
 
 
 
f5b6e30
 
67c7e19
f5b6e30
 
 
cb0039e
 
 
 
f5b6e30
cb0039e
 
 
 
 
 
 
f5b6e30
 
cb0039e
 
 
f5b6e30
 
cb0039e
f5b6e30
 
cb0039e
f5b6e30
 
cb0039e
 
f5b6e30
cb0039e
 
f5b6e30
 
cb0039e
 
 
 
 
 
 
a055f19
f5b6e30
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import streamlit as st
import pandas as pd
import re
import json
import transformers
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer

st.set_page_config(
    page_title="Named Entity Recognition Wolof",
    page_icon="📘"
)

def convert_df(df: pd.DataFrame):
    return df.to_csv(index=False).encode('utf-8')

def convert_json(df: pd.DataFrame):
    result = df.to_json(orient="index")
    parsed = json.loads(result)
    json_string = json.dumps(parsed)
    return json_string

def load_model():
    model = AutoModelForTokenClassification.from_pretrained("vonewman/wolof-finetuned-ner")
    trainer = Trainer(model=model)
    tokenizer = AutoTokenizer.from_pretrained("vonewman/wolof-finetuned-ner")
    return trainer, model, tokenizer

def align_word_ids(texts):
    # Utilisez le tokenizer pour obtenir les tokens de chaque mot
    tokenized_inputs = tokenizer(texts, padding='max_length', max_length=218, truncation=True, return_tensors="pt")
    input_ids = tokenized_inputs["input_ids"][0]

    # Créez une liste pour stocker les IDs correspondant à chaque mot
    word_ids = []

    for i, input_id in enumerate(input_ids):
        # Si le token est un token de début de mot, ajoutez son ID à la liste
        if tokenizer.decode(input_id) == tokenizer.decode(tokenizer.encode(tokenizer.decode(input_id), add_special_tokens=False)):
            word_ids.append(i)

    label_ids = []

    # Parcourez les word_ids pour étiqueter les tokens de début de mot comme 1
    for i in range(len(input_ids)):
        if i in word_ids:
            label_ids.append(1)
        else:
            label_ids.append(-100)  # -100 pour les tokens qui ne sont pas le début d'un mot

    return label_ids


def predict_ner_labels(model, tokenizer, sentence):
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")

    if use_cuda:
        model = model.cuda()

    text = tokenizer(sentence, padding='max_length', max_length=218, truncation=True, return_tensors="pt")
    mask = text['attention_mask'].to(device)
    input_id = text['input_ids'].to(device)
    label_ids = torch.Tensor(align_word_ids(sentence)).unsqueeze(0).to(device)

    logits = model(input_id, mask, None)
    logits_clean = logits[0][label_ids != -100]

    predictions = logits_clean.argmax(dim=1).tolist()
    prediction_label = [id2tag[i] for i in predictions]

    return prediction_label

id2tag = {0: 'O', 1: 'B-LOC', 2: 'B-PER', 3: 'I-PER', 4: 'B-ORG', 5: 'I-DATE', 6: 'B-DATE', 7: 'I-ORG', 8: 'I-LOC'}


def tag_sentence(text):
    trainer, model, tokenizer = load_model()

    # Utilisez votre modèle pour prédire les tags
    predictions = predict_ner_labels(model, tokenizer, text)

    # Obtenez les probabilités associées aux prédictions
    inputs = tokenizer(text, truncation=True, return_tensors="pt")
    outputs = model(**inputs)
    probs = torch.nn.functional.softmax(outputs.logits, dim=-1)

    # Calcul des probabilités que le tag prédit soit correct
    word_tags = []
    for i, tag in enumerate(predictions):
        tag_id = id2tag.get(tag, -1)  # Vérifiez si la clé existe, sinon utilisez -1 comme indice
        if tag_id != -1:
            prob = np.round(probs[0, i, tag_id].item() * 100, 2)
            word_tags.append((tokenizer.decode(inputs['input_ids'][0][i].item()), tag, prob))

    # Créez un DataFrame avec les colonnes dans l'ordre spécifié
    df = pd.DataFrame(word_tags, columns=['word', 'tag', 'probability'])

    return df


st.title("📘 Named Entity Recognition Wolof")

with st.form(key='my_form'):
    x1 = st.text_input(label='Enter a sentence:', max_chars=250)
    submit_button = st.form_submit_button(label='🏷️ Create tags')

if submit_button:
    if re.sub('\s+', '', x1) == '':
        st.error('Please enter a non-empty sentence.')
    elif re.match(r'\A\s*\w+\s*\Z', x1):
        st.error("Please enter a sentence with at least one word")
    else:
        st.markdown("### Tagged Sentence")
        st.header("")

        results = tag_sentence(x1)

        cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])

        with c1:
            csvbutton = st.download_button(label="📥 Download .csv", data=convert_df(results),
                                           file_name="results.csv", mime='text/csv', key='csv')
        with c2:
            textbutton = st.download_button(label="📥 Download .txt", data=convert_df(results),
                                            file_name="results.text", mime='text/plain', key='text')
        with c3:
            jsonbutton = st.download_button(label="📥 Download .json", data=convert_json(results),
                                            file_name="results.json", mime='application/json', key='json')

        st.header("")

        c1, c2, c3 = st.columns([1, 3, 1])

        with c2:
            st.table(results.style.background_gradient(subset=['probability']).format(precision=2))

st.header("")
st.header("")
st.header("")
with st.expander("ℹ️ - About this app", expanded=True):
    st.write(
        """     
-   The **Named Entity Recognition Wolof** app is a tool that performs named entity recognition in Wolof.
-   The available entities are: *corporation*, *location*, *person*, and *date*.
-   The app uses the [XLMRoberta model](https://huggingface.co/xlm-roberta-base), fine-tuned on the [masakhaNER](https://huggingface.co/datasets/masakhane/masakhaner2) dataset.
-   The model uses the **byte-level BPE tokenizer**. Each sentence is first tokenized.
        """
    )