Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,009 Bytes
472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 b976908 472f1d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, ModernBertConfig
# models.py (containing ModernBertForSentiment) will be loaded from the Hub due to trust_remote_code=True
from typing import Dict, Any
import yaml
class SentimentInference:
def __init__(self, config_path: str = "config.yaml"):
"""Load configuration and initialize model and tokenizer from Hugging Face Hub."""
with open(config_path, 'r') as f:
config_data = yaml.safe_load(f)
model_yaml_cfg = config_data.get('model', {})
inference_yaml_cfg = config_data.get('inference', {})
model_hf_repo_id = model_yaml_cfg.get('name_or_path')
if not model_hf_repo_id:
raise ValueError("model.name_or_path must be specified in config.yaml (e.g., 'username/model_name')")
tokenizer_hf_repo_id = model_yaml_cfg.get('tokenizer_name_or_path', model_hf_repo_id)
self.max_length = inference_yaml_cfg.get('max_length', model_yaml_cfg.get('max_length', 512))
print(f"Loading tokenizer from: {tokenizer_hf_repo_id}")
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_hf_repo_id)
print(f"Loading base ModernBertConfig from: {model_hf_repo_id}")
# Load the config that was uploaded with the model (config.json in the HF repo)
# This config should already have the correct architecture defined by ModernBertConfig.
# We then augment it with any custom parameters needed by ModernBertForSentiment's __init__.
loaded_config = ModernBertConfig.from_pretrained(model_hf_repo_id)
# Augment loaded_config with parameters from model_yaml_cfg needed for ModernBertForSentiment initialization
# These should reflect how the model was trained and its specific custom head.
loaded_config.pooling_strategy = model_yaml_cfg.get('pooling_strategy', 'mean') # Default to 'mean' as per your models.py change
loaded_config.num_weighted_layers = model_yaml_cfg.get('num_weighted_layers', 4)
loaded_config.classifier_dropout = model_yaml_cfg.get('dropout') # Allow None if not in yaml
# num_labels should ideally be in the config.json uploaded to HF, but can be set here if needed.
# For binary sentiment with a single logit output, num_labels is 1.
loaded_config.num_labels = model_yaml_cfg.get('num_labels', 1)
# The loss_function might not be strictly needed for inference if the model doesn't use it in forward pass for eval,
# but if ModernBertForSentiment.__init__ requires it, it must be provided.
# Assuming it's not critical for basic inference here to simplify.
# loaded_config.loss_function = model_yaml_cfg.get('loss_function', {'name': '...', 'params': {}})
print(f"Instantiating and loading model weights for {model_hf_repo_id}...")
# trust_remote_code=True allows loading models.py (containing ModernBertForSentiment)
# from the Hugging Face model repository.
self.model = AutoModelForSequenceClassification.from_pretrained(
model_hf_repo_id,
config=loaded_config, # Pass the augmented config
trust_remote_code=True
)
self.model.eval()
print(f"Model {model_hf_repo_id} loaded successfully from Hugging Face Hub.")
def predict(self, text: str) -> Dict[str, Any]:
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=self.max_length, padding=True)
with torch.no_grad():
outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
logits = outputs.get("logits") # Use .get for safety
if logits is None:
raise ValueError("Model output did not contain 'logits'. Check model's forward pass.")
prob = torch.sigmoid(logits).item()
return {"sentiment": "positive" if prob > 0.5 else "negative", "confidence": prob} |