File size: 8,630 Bytes
9a4b7b9
472f1d2
 
 
 
6529956
 
 
 
9a4b7b9
472f1d2
 
 
 
 
 
 
 
 
9a4b7b9
472f1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6529956
 
 
 
 
 
 
f96f910
 
6529956
 
 
 
 
 
 
 
 
f96f910
 
6529956
 
 
 
 
 
 
 
 
 
 
 
f96f910
 
6529956
be92e89
f96f910
be92e89
 
 
3357f2e
be92e89
 
 
 
 
 
f96f910
 
be92e89
6529956
be92e89
f96f910
 
6529956
 
 
 
 
 
 
472f1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffba17f
472f1d2
 
 
 
6529956
 
 
ffba17f
 
 
 
 
6529956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472f1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
from inference import SentimentInference
import os
from datasets import load_dataset
import random
import torch
from torch.utils.data import DataLoader
from evaluation import evaluate
from tqdm import tqdm

# --- Initialize Sentiment Model ---
CONFIG_PATH = os.path.join(os.path.dirname(__file__), "config.yaml")
if not os.path.exists(CONFIG_PATH):
    CONFIG_PATH = "config.yaml"
    if not os.path.exists(CONFIG_PATH):
        raise FileNotFoundError(
            f"Configuration file not found. Tried {os.path.join(os.path.dirname(__file__), 'config.yaml')} and {CONFIG_PATH}. "
            f"Ensure 'config.yaml' exists and is accessible."
        )

print(f"Loading model with config: {CONFIG_PATH}")
try:
    sentiment_inferer = SentimentInference(config_path=CONFIG_PATH)
    print("Sentiment model loaded successfully.")
except Exception as e:
    print(f"Error loading sentiment model: {e}")
    sentiment_inferer = None

# --- Load IMDB Dataset ---
print("Loading IMDB dataset for samples...")
try:
    imdb_dataset = load_dataset("imdb", split="test")
    print("IMDB dataset loaded successfully.")
except Exception as e:
    print(f"Failed to load IMDB dataset: {e}. Sample loading will be disabled.")
    imdb_dataset = None

def load_random_imdb_sample():
    """Loads a random sample text from the IMDB dataset."""
    if imdb_dataset is None:
        return "IMDB dataset not available. Cannot load sample.", None
    random_index = random.randint(0, len(imdb_dataset) - 1)
    sample = imdb_dataset[random_index]
    return sample["text"], sample["label"]

def predict_sentiment(text_input, true_label_state):
    """Predicts sentiment for the given text_input."""
    if sentiment_inferer is None:
        return "Error: Sentiment model could not be loaded. Please check the logs.", true_label_state
    
    if not text_input or not text_input.strip():
        return "Please enter some text for analysis.", true_label_state
    
    try:
        prediction = sentiment_inferer.predict(text_input)
        sentiment = prediction['sentiment']
        
        # Convert numerical label to text if available
        true_sentiment = None
        if true_label_state is not None:
            true_sentiment = "positive" if true_label_state == 1 else "negative"
        
        result = f"Predicted Sentiment: {sentiment.capitalize()}"
        if true_sentiment:
            result += f"\nTrue IMDB Label: {true_sentiment.capitalize()}"
        
        return result, None  # Reset true label state after display
        
    except Exception as e:
        print(f"Error during prediction: {e}")
        return f"Error during prediction: {str(e)}", true_label_state

def run_full_evaluation_gradio():
    """Runs full evaluation on the IMDB test set and yields results for Gradio."""
    if sentiment_inferer is None or sentiment_inferer.model is None:
        yield "Error: Sentiment model could not be loaded. Cannot run evaluation."
        return

    try:
        accumulated_text = "Starting full evaluation... This will process 25,000 samples and may take 10-20 minutes. Please be patient.\n"
        yield accumulated_text
        
        device = sentiment_inferer.device
        model = sentiment_inferer.model
        tokenizer = sentiment_inferer.tokenizer
        max_length = sentiment_inferer.max_length
        batch_size = 16  # Consistent with evaluation.py default

        yield "Loading IMDB test dataset (this might take a moment)..."
        imdb_test_full = load_dataset("imdb", split="test")
        accumulated_text += f"IMDB test dataset loaded ({len(imdb_test_full)} samples). Tokenizing dataset...\n"
        yield accumulated_text

        def tokenize_function(examples):
            tokenized_output = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=max_length)
            tokenized_output["lengths"] = [sum(mask) for mask in tokenized_output["attention_mask"]]
            return tokenized_output
        
        tokenized_imdb_test_full = imdb_test_full.map(tokenize_function, batched=True, num_proc=os.cpu_count()//2 if os.cpu_count() > 1 else 1)
        tokenized_imdb_test_full = tokenized_imdb_test_full.remove_columns(["text"])
        tokenized_imdb_test_full = tokenized_imdb_test_full.rename_column("label", "labels")
        tokenized_imdb_test_full.set_format("torch", columns=["input_ids", "attention_mask", "labels", "lengths"])

        test_dataloader_full = DataLoader(tokenized_imdb_test_full, batch_size=batch_size)
        accumulated_text += "Dataset tokenized and DataLoader prepared. Starting model evaluation on the test set...\n"
        yield accumulated_text

        # The 'evaluate' function from evaluation.py is now a generator.
        # Iterate through its yielded updates and results, accumulating text.
        for update in evaluate(model, test_dataloader_full, device):
            if isinstance(update, dict):
                # This is the final results dictionary
                results_str = "\n--- Full Evaluation Results ---\n" # Start with a newline
                for key, value in update.items():
                    if isinstance(value, float):
                        results_str += f"{key.capitalize()}: {value:.4f}\n"
                    else:
                        results_str += f"{key.capitalize()}: {value}\n"
                results_str += "\nEvaluation finished."
                accumulated_text += results_str
                yield accumulated_text 
                break # Stop after getting the results dict
            else:
                # This is a progress string
                accumulated_text += str(update) + "\n" # Append newline to each progress string
                yield accumulated_text

    except Exception as e:
        import traceback
        error_msg = f"An error occurred during full evaluation:\n{str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        yield error_msg

# --- Gradio Interface ---
with gr.Blocks() as demo:
    true_label = gr.State()
    
    gr.Markdown("## IMDb Sentiment Analyzer")
    gr.Markdown("Enter a movie review to classify its sentiment as Positive or Negative, or load a random sample from the IMDb dataset.")
    
    with gr.Row():
        input_textbox = gr.Textbox(lines=7, placeholder="Enter movie review here...", label="Movie Review", scale=3)
        output_text = gr.Text(label="Analysis Result", scale=1)

    with gr.Row():
        submit_button = gr.Button("Analyze Sentiment")
        load_sample_button = gr.Button("Load Random IMDB Sample")

    gr.Examples(
        examples=[
            ["This movie was absolutely fantastic! The acting was superb and the plot was gripping."],
            ["I was really disappointed with this film. It was boring and the story made no sense."],
            ["An average movie, had some good parts but overall quite forgettable."],
            ["While the plot was predictable, the acting was solid and the plot was engaging. Overall it was watchable"]
        ],
        inputs=input_textbox
    )

    with gr.Accordion("Advanced: Full Model Evaluation on IMDB Test Set", open=False):
        gr.Markdown(
            """**WARNING!** Clicking the button below will run the sentiment analysis model on the **entire IMDB test dataset (25,000 reviews)**. "
            
            "This is computationally intensive process and will take a long time (potentially **20 minutes or more** depending on the hardware of the Hugging Face Space or machine running this app). It may not even run unless the hardware is upgraded. "
            
            "The application might appear unresponsive during this period. "
            
            "Progress messages will be shown below."""
        )
        run_eval_button = gr.Button("Run Full Evaluation on IMDB Test Set")
        evaluation_output_textbox = gr.Textbox(
            label="Evaluation Progress & Results",
            lines=15,
            interactive=False,
            show_label=True,
            max_lines=20
        )
        run_eval_button.click(
            fn=run_full_evaluation_gradio, 
            inputs=None, 
            outputs=evaluation_output_textbox
        )

    # Wire actions
    submit_button.click(
        fn=predict_sentiment,
        inputs=[input_textbox, true_label],
        outputs=[output_text, true_label]
    )
    load_sample_button.click(
        fn=load_random_imdb_sample,
        inputs=None,
        outputs=[input_textbox, true_label]
    )

if __name__ == '__main__':
    print("Launching Gradio interface...")
    demo.launch(share=False)