Spaces:
Sleeping
Sleeping
File size: 8,630 Bytes
9a4b7b9 472f1d2 6529956 9a4b7b9 472f1d2 9a4b7b9 472f1d2 6529956 f96f910 6529956 f96f910 6529956 f96f910 6529956 be92e89 f96f910 be92e89 3357f2e be92e89 f96f910 be92e89 6529956 be92e89 f96f910 6529956 472f1d2 ffba17f 472f1d2 6529956 ffba17f 6529956 472f1d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import gradio as gr
from inference import SentimentInference
import os
from datasets import load_dataset
import random
import torch
from torch.utils.data import DataLoader
from evaluation import evaluate
from tqdm import tqdm
# --- Initialize Sentiment Model ---
CONFIG_PATH = os.path.join(os.path.dirname(__file__), "config.yaml")
if not os.path.exists(CONFIG_PATH):
CONFIG_PATH = "config.yaml"
if not os.path.exists(CONFIG_PATH):
raise FileNotFoundError(
f"Configuration file not found. Tried {os.path.join(os.path.dirname(__file__), 'config.yaml')} and {CONFIG_PATH}. "
f"Ensure 'config.yaml' exists and is accessible."
)
print(f"Loading model with config: {CONFIG_PATH}")
try:
sentiment_inferer = SentimentInference(config_path=CONFIG_PATH)
print("Sentiment model loaded successfully.")
except Exception as e:
print(f"Error loading sentiment model: {e}")
sentiment_inferer = None
# --- Load IMDB Dataset ---
print("Loading IMDB dataset for samples...")
try:
imdb_dataset = load_dataset("imdb", split="test")
print("IMDB dataset loaded successfully.")
except Exception as e:
print(f"Failed to load IMDB dataset: {e}. Sample loading will be disabled.")
imdb_dataset = None
def load_random_imdb_sample():
"""Loads a random sample text from the IMDB dataset."""
if imdb_dataset is None:
return "IMDB dataset not available. Cannot load sample.", None
random_index = random.randint(0, len(imdb_dataset) - 1)
sample = imdb_dataset[random_index]
return sample["text"], sample["label"]
def predict_sentiment(text_input, true_label_state):
"""Predicts sentiment for the given text_input."""
if sentiment_inferer is None:
return "Error: Sentiment model could not be loaded. Please check the logs.", true_label_state
if not text_input or not text_input.strip():
return "Please enter some text for analysis.", true_label_state
try:
prediction = sentiment_inferer.predict(text_input)
sentiment = prediction['sentiment']
# Convert numerical label to text if available
true_sentiment = None
if true_label_state is not None:
true_sentiment = "positive" if true_label_state == 1 else "negative"
result = f"Predicted Sentiment: {sentiment.capitalize()}"
if true_sentiment:
result += f"\nTrue IMDB Label: {true_sentiment.capitalize()}"
return result, None # Reset true label state after display
except Exception as e:
print(f"Error during prediction: {e}")
return f"Error during prediction: {str(e)}", true_label_state
def run_full_evaluation_gradio():
"""Runs full evaluation on the IMDB test set and yields results for Gradio."""
if sentiment_inferer is None or sentiment_inferer.model is None:
yield "Error: Sentiment model could not be loaded. Cannot run evaluation."
return
try:
accumulated_text = "Starting full evaluation... This will process 25,000 samples and may take 10-20 minutes. Please be patient.\n"
yield accumulated_text
device = sentiment_inferer.device
model = sentiment_inferer.model
tokenizer = sentiment_inferer.tokenizer
max_length = sentiment_inferer.max_length
batch_size = 16 # Consistent with evaluation.py default
yield "Loading IMDB test dataset (this might take a moment)..."
imdb_test_full = load_dataset("imdb", split="test")
accumulated_text += f"IMDB test dataset loaded ({len(imdb_test_full)} samples). Tokenizing dataset...\n"
yield accumulated_text
def tokenize_function(examples):
tokenized_output = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=max_length)
tokenized_output["lengths"] = [sum(mask) for mask in tokenized_output["attention_mask"]]
return tokenized_output
tokenized_imdb_test_full = imdb_test_full.map(tokenize_function, batched=True, num_proc=os.cpu_count()//2 if os.cpu_count() > 1 else 1)
tokenized_imdb_test_full = tokenized_imdb_test_full.remove_columns(["text"])
tokenized_imdb_test_full = tokenized_imdb_test_full.rename_column("label", "labels")
tokenized_imdb_test_full.set_format("torch", columns=["input_ids", "attention_mask", "labels", "lengths"])
test_dataloader_full = DataLoader(tokenized_imdb_test_full, batch_size=batch_size)
accumulated_text += "Dataset tokenized and DataLoader prepared. Starting model evaluation on the test set...\n"
yield accumulated_text
# The 'evaluate' function from evaluation.py is now a generator.
# Iterate through its yielded updates and results, accumulating text.
for update in evaluate(model, test_dataloader_full, device):
if isinstance(update, dict):
# This is the final results dictionary
results_str = "\n--- Full Evaluation Results ---\n" # Start with a newline
for key, value in update.items():
if isinstance(value, float):
results_str += f"{key.capitalize()}: {value:.4f}\n"
else:
results_str += f"{key.capitalize()}: {value}\n"
results_str += "\nEvaluation finished."
accumulated_text += results_str
yield accumulated_text
break # Stop after getting the results dict
else:
# This is a progress string
accumulated_text += str(update) + "\n" # Append newline to each progress string
yield accumulated_text
except Exception as e:
import traceback
error_msg = f"An error occurred during full evaluation:\n{str(e)}\n{traceback.format_exc()}"
print(error_msg)
yield error_msg
# --- Gradio Interface ---
with gr.Blocks() as demo:
true_label = gr.State()
gr.Markdown("## IMDb Sentiment Analyzer")
gr.Markdown("Enter a movie review to classify its sentiment as Positive or Negative, or load a random sample from the IMDb dataset.")
with gr.Row():
input_textbox = gr.Textbox(lines=7, placeholder="Enter movie review here...", label="Movie Review", scale=3)
output_text = gr.Text(label="Analysis Result", scale=1)
with gr.Row():
submit_button = gr.Button("Analyze Sentiment")
load_sample_button = gr.Button("Load Random IMDB Sample")
gr.Examples(
examples=[
["This movie was absolutely fantastic! The acting was superb and the plot was gripping."],
["I was really disappointed with this film. It was boring and the story made no sense."],
["An average movie, had some good parts but overall quite forgettable."],
["While the plot was predictable, the acting was solid and the plot was engaging. Overall it was watchable"]
],
inputs=input_textbox
)
with gr.Accordion("Advanced: Full Model Evaluation on IMDB Test Set", open=False):
gr.Markdown(
"""**WARNING!** Clicking the button below will run the sentiment analysis model on the **entire IMDB test dataset (25,000 reviews)**. "
"This is computationally intensive process and will take a long time (potentially **20 minutes or more** depending on the hardware of the Hugging Face Space or machine running this app). It may not even run unless the hardware is upgraded. "
"The application might appear unresponsive during this period. "
"Progress messages will be shown below."""
)
run_eval_button = gr.Button("Run Full Evaluation on IMDB Test Set")
evaluation_output_textbox = gr.Textbox(
label="Evaluation Progress & Results",
lines=15,
interactive=False,
show_label=True,
max_lines=20
)
run_eval_button.click(
fn=run_full_evaluation_gradio,
inputs=None,
outputs=evaluation_output_textbox
)
# Wire actions
submit_button.click(
fn=predict_sentiment,
inputs=[input_textbox, true_label],
outputs=[output_text, true_label]
)
load_sample_button.click(
fn=load_random_imdb_sample,
inputs=None,
outputs=[input_textbox, true_label]
)
if __name__ == '__main__':
print("Launching Gradio interface...")
demo.launch(share=False)
|