import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification, ModernBertConfig # models.py (containing ModernBertForSentiment) will be loaded from the Hub due to trust_remote_code=True from typing import Dict, Any import yaml class SentimentInference: def __init__(self, config_path: str = "config.yaml"): """Load configuration and initialize model and tokenizer from Hugging Face Hub.""" with open(config_path, 'r') as f: config_data = yaml.safe_load(f) model_yaml_cfg = config_data.get('model', {}) inference_yaml_cfg = config_data.get('inference', {}) model_hf_repo_id = model_yaml_cfg.get('name_or_path') if not model_hf_repo_id: raise ValueError("model.name_or_path must be specified in config.yaml (e.g., 'username/model_name')") tokenizer_hf_repo_id = model_yaml_cfg.get('tokenizer_name_or_path', model_hf_repo_id) self.max_length = inference_yaml_cfg.get('max_length', model_yaml_cfg.get('max_length', 512)) print(f"Loading tokenizer from: {tokenizer_hf_repo_id}") self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_hf_repo_id) print(f"Loading base ModernBertConfig from: {model_hf_repo_id}") # Load the config that was uploaded with the model (config.json in the HF repo) # This config should already have the correct architecture defined by ModernBertConfig. # We then augment it with any custom parameters needed by ModernBertForSentiment's __init__. loaded_config = ModernBertConfig.from_pretrained(model_hf_repo_id) # Augment loaded_config with parameters from model_yaml_cfg needed for ModernBertForSentiment initialization # These should reflect how the model was trained and its specific custom head. loaded_config.pooling_strategy = model_yaml_cfg.get('pooling_strategy', 'mean') # Default to 'mean' as per your models.py change loaded_config.num_weighted_layers = model_yaml_cfg.get('num_weighted_layers', 4) loaded_config.classifier_dropout = model_yaml_cfg.get('dropout') # Allow None if not in yaml # num_labels should ideally be in the config.json uploaded to HF, but can be set here if needed. # For binary sentiment with a single logit output, num_labels is 1. loaded_config.num_labels = model_yaml_cfg.get('num_labels', 1) # The loss_function might not be strictly needed for inference if the model doesn't use it in forward pass for eval, # but if ModernBertForSentiment.__init__ requires it, it must be provided. # Assuming it's not critical for basic inference here to simplify. # loaded_config.loss_function = model_yaml_cfg.get('loss_function', {'name': '...', 'params': {}}) print(f"Instantiating and loading model weights for {model_hf_repo_id}...") # trust_remote_code=True allows loading models.py (containing ModernBertForSentiment) # from the Hugging Face model repository. self.model = AutoModelForSequenceClassification.from_pretrained( model_hf_repo_id, config=loaded_config, # Pass the augmented config trust_remote_code=True ) self.model.eval() print(f"Model {model_hf_repo_id} loaded successfully from Hugging Face Hub.") def predict(self, text: str) -> Dict[str, Any]: inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=self.max_length, padding=True) with torch.no_grad(): outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']) logits = outputs.get("logits") # Use .get for safety if logits is None: raise ValueError("Model output did not contain 'logits'. Check model's forward pass.") prob = torch.sigmoid(logits).item() return {"sentiment": "positive" if prob > 0.5 else "negative", "confidence": prob}