deepvats / docker /docker-compose.yml
misantamaria's picture
Add application file
f58f618
raw
history blame
2.81 kB
services:
jupyter:
build:
args:
- username=${USER_NAME}
- uid=${USER_ID}
- gid=${GROUP_ID}
- CUDA_VERSION=12.2.0-devel-ubuntu20.04
- JUPYTER_TOKEN=${JUPYTER_TOKEN}
context: ../
dockerfile: docker/Dockerfile.jupyter
image: dvats-jupyter:12.2.0-devel-ubuntu20.04
ports:
- "${JUPYTER_PORT}:8888"
environment:
- WANDB_ENTITY=${WANDB_ENTITY}
- WANDB_PROJECT=${WANDB_PROJECT}
- WANDB_API_KEY=${WANDB_API_KEY}
- GH_TOKEN=${GH_TOKEN}
- CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES}
- WANDB_DIR=/home/${USER_NAME}/work
- JUPYTER_TOKEN=${JUPYTER_TOKEN}
volumes:
- ../:/home/${USER}/work
- ${LOCAL_DATA_PATH}:/home/${USER_NAME}/data/
- conda-env:/home/${USER_NAME}/env
- miniconda:/home/${USER_NAME}/miniconda3
- lib:/home/${USER_NAME}/lib
init: true
stdin_open: true
tty: true
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
rstudio-server:
build:
context: ../
dockerfile: docker/Dockerfile.rstudio
args:
- WANDB_API_KEY=${WANDB_API_KEY} #
- RETICULATE_PYTHON_ENV=/home/${USER_NAME}/env
- RETICULATE_MINICONDA_PATH=/home/${USER_NAME}/miniconda3
- USER=${USER_NAME} #*
- UID=${USER_ID} #*
- GID=${GROUP_ID} #*
image: dvats-r:rocker-ml_4.2
ports:
- "${RSTUDIO_PORT}:8787" #*
environment:
- WANDB_ENTITY=${WANDB_ENTITY}
- WANDB_PROJECT=${WANDB_PROJECT}
- USER=${USER_NAME} #*
- USERID=${USER_ID} #*
- GROUPID=${GROUP_ID} #*
- PASSWORD=${RSTUDIO_PASSWD} #*
- ROOT=FALSE
- CUDA_VISIBLE_DEVICES=0,1,2
#- CUDA_VISIBLE_DEVICES=1
# - CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES}
- GH_TOKEN=${GH_TOKEN} #*
# TODO (28/03/2023): I don't know why it is not working without this
- ENV_VARS=WANDB_ENTITY,WANDB_PROJECT,USER,USERID,GROUPID,PASSWORD,ROOT,CUDA_VISIBLE_DEVICES
volumes:
- ../r_shiny_app:/home/${USER_NAME}/app #*
- ${LOCAL_DATA_PATH}:/home/${USER_NAME}/data/ #*
- ../dvats:/home/${USER_NAME}/dvats
- conda-env:/home/${USER_NAME}/env
- miniconda:/home/${USER_NAME}/miniconda3 #:ro
- lib:/home/${USER_NAME}/lib
deploy:
resources:
#limits:
#cpus: '0.75'
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
volumes:
conda-env:
miniconda:
lib: