Makeup for my application
Browse files
app.py
CHANGED
@@ -10,94 +10,140 @@ import asyncio
|
|
10 |
from dotenv import load_dotenv
|
11 |
load_dotenv()
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
transcription = client.audio.translations.create(
|
74 |
-
file=(
|
75 |
model='whisper-large-v3',
|
76 |
)
|
77 |
return transcription.text
|
78 |
|
79 |
-
#
|
80 |
-
def answer(
|
81 |
-
model = ChatGroq(
|
82 |
-
model="llama-3.3-70b-versatile",
|
83 |
-
temperature=0.6
|
84 |
-
)
|
85 |
-
|
86 |
prompt = ChatPromptTemplate([
|
87 |
-
("system", "You are
|
88 |
-
("user", "User Query: {question}")
|
89 |
])
|
90 |
-
|
91 |
parser = StrOutputParser()
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
answer = chain.invoke({'question': user_question})
|
95 |
-
return answer
|
96 |
-
|
97 |
-
# Audio conversion
|
98 |
async def convert_audio(text, filename):
|
99 |
voice = "fr-FR-VivienneMultilingualNeural"
|
100 |
communicate = edge_tts.Communicate(text, voice)
|
101 |
await communicate.save(filename)
|
102 |
-
|
103 |
-
frontend()
|
|
|
10 |
from dotenv import load_dotenv
|
11 |
load_dotenv()
|
12 |
|
13 |
+
# Page config
|
14 |
+
st.set_page_config(page_title="Voice AI Assistant", page_icon="π€", layout="centered")
|
15 |
+
|
16 |
+
# Theme toggle
|
17 |
+
if "dark_mode" not in st.session_state:
|
18 |
+
st.session_state.dark_mode = False # default: light mode
|
19 |
+
dm = st.sidebar.checkbox("π Dark Mode", value=st.session_state.dark_mode)
|
20 |
+
st.session_state.dark_mode = dm
|
21 |
+
|
22 |
+
# Theme colors
|
23 |
+
BG = "#0f1620" if dm else "#f8f9fa"
|
24 |
+
PANEL = "#1c2330" if dm else "#ffffff"
|
25 |
+
TEXT = "#e3e8f1" if dm else "#1a1a1a"
|
26 |
+
CARD = "#2a3240" if dm else "#f1f3f5"
|
27 |
+
ACCENT = "#ff5252"
|
28 |
+
BORDER = "#333" if dm else "#ddd"
|
29 |
+
|
30 |
+
# Custom CSS
|
31 |
+
st.markdown(f"""
|
32 |
+
<style>
|
33 |
+
.stApp {{
|
34 |
+
background-color: {BG};
|
35 |
+
color: {TEXT};
|
36 |
+
}}
|
37 |
+
[data-testid="stSidebar"] {{
|
38 |
+
background-color: {PANEL};
|
39 |
+
}}
|
40 |
+
.block-container {{
|
41 |
+
padding-top: 2rem;
|
42 |
+
padding-bottom: 2rem;
|
43 |
+
}}
|
44 |
+
h1, h2, h3, h4 {{
|
45 |
+
color: {TEXT};
|
46 |
+
}}
|
47 |
+
.conversation-block {{
|
48 |
+
background-color: {CARD};
|
49 |
+
padding: 1rem;
|
50 |
+
border-radius: 8px;
|
51 |
+
margin-bottom: 1rem;
|
52 |
+
border: 1px solid {BORDER};
|
53 |
+
}}
|
54 |
+
.question {{
|
55 |
+
font-weight: bold;
|
56 |
+
color: {ACCENT};
|
57 |
+
}}
|
58 |
+
.answer {{
|
59 |
+
margin-top: 0.5rem;
|
60 |
+
color: {TEXT};
|
61 |
+
}}
|
62 |
+
.audio-player {{
|
63 |
+
margin-top: 0.5rem;
|
64 |
+
}}
|
65 |
+
.status-bar {{
|
66 |
+
font-style: italic;
|
67 |
+
color: {TEXT}AA;
|
68 |
+
margin-bottom: 1rem;
|
69 |
+
}}
|
70 |
+
</style>
|
71 |
+
""", unsafe_allow_html=True)
|
72 |
+
|
73 |
+
# App UI
|
74 |
+
st.title("π€ Voice AI Assistant")
|
75 |
+
|
76 |
+
# Session init
|
77 |
+
if "conversation" not in st.session_state:
|
78 |
+
st.session_state.conversation = [] # list of (question, answer, audio_filename)
|
79 |
+
if "audio_count" not in st.session_state:
|
80 |
+
st.session_state.audio_count = 1
|
81 |
+
|
82 |
+
status = st.empty()
|
83 |
+
status.markdown("<div class='status-bar'>ποΈ Press mic button or type to ask a question</div>", unsafe_allow_html=True)
|
84 |
+
|
85 |
+
recorded_audio = audio_recorder(sample_rate=8000)
|
86 |
+
text_input = st.chat_input("Type your question here...")
|
87 |
+
|
88 |
+
# ----- INPUT HANDLER -----
|
89 |
+
def handle_input(user_text):
|
90 |
+
status.markdown("<div class='status-bar'>π€ Thinking...</div>", unsafe_allow_html=True)
|
91 |
+
response = answer(user_text)
|
92 |
+
audio_file = f"output{st.session_state.audio_count}.wav"
|
93 |
+
status.markdown("<div class='status-bar'>π§ Converting response to audio...</div>", unsafe_allow_html=True)
|
94 |
+
asyncio.run(convert_audio(response, audio_file))
|
95 |
+
st.session_state.audio_count += 1
|
96 |
+
|
97 |
+
st.session_state.conversation.append((f"Q: {user_text}", f"A: {response}", audio_file))
|
98 |
+
status.markdown("<div class='status-bar'>β
Ask another question...</div>", unsafe_allow_html=True)
|
99 |
+
|
100 |
+
# ----- PROCESS INPUT -----
|
101 |
+
if text_input:
|
102 |
+
handle_input(text_input)
|
103 |
+
elif recorded_audio:
|
104 |
+
status.markdown("<div class='status-bar'>π§ Transcribing speech...</div>", unsafe_allow_html=True)
|
105 |
+
data_to_file(recorded_audio)
|
106 |
+
transcription = audio_to_text("temp_audio.wav")
|
107 |
+
handle_input(transcription)
|
108 |
+
|
109 |
+
# ----- SHOW CONVERSATION -----
|
110 |
+
if st.session_state.conversation:
|
111 |
+
st.markdown("## π§Ύ Conversation History")
|
112 |
+
for i, (q, a, audio_path) in enumerate(st.session_state.conversation):
|
113 |
+
with st.container():
|
114 |
+
st.markdown(f"<div class='conversation-block'>", unsafe_allow_html=True)
|
115 |
+
st.markdown(f"<div class='question'>{q}</div>", unsafe_allow_html=True)
|
116 |
+
st.markdown(f"<div class='answer'>{a}</div>", unsafe_allow_html=True)
|
117 |
+
st.audio(audio_path, format="audio/wav", autoplay=(i == len(st.session_state.conversation)-1))
|
118 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
119 |
+
|
120 |
+
# ----- AUDIO TO TEXT -----
|
121 |
+
def data_to_file(audio_blob):
|
122 |
+
with open("temp_audio.wav", "wb") as f:
|
123 |
+
f.write(audio_blob)
|
124 |
+
|
125 |
+
def audio_to_text(path):
|
126 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
127 |
+
with open(path, "rb") as f:
|
128 |
transcription = client.audio.translations.create(
|
129 |
+
file=(path, f.read()),
|
130 |
model='whisper-large-v3',
|
131 |
)
|
132 |
return transcription.text
|
133 |
|
134 |
+
# ----- LLM ANSWER -----
|
135 |
+
def answer(question):
|
136 |
+
model = ChatGroq(model="llama-3.3-70b-versatile", temperature=0.6)
|
|
|
|
|
|
|
|
|
137 |
prompt = ChatPromptTemplate([
|
138 |
+
("system", "You are a knowledgeable AI assistant. Keep answers clear, brief, and well-punctuated for speech conversion."),
|
139 |
+
("user", "User Query: {question}")
|
140 |
])
|
|
|
141 |
parser = StrOutputParser()
|
142 |
+
chain = prompt | model | parser
|
143 |
+
return chain.invoke({'question': question})
|
144 |
|
145 |
+
# ----- TEXT TO AUDIO -----
|
|
|
|
|
|
|
|
|
146 |
async def convert_audio(text, filename):
|
147 |
voice = "fr-FR-VivienneMultilingualNeural"
|
148 |
communicate = edge_tts.Communicate(text, voice)
|
149 |
await communicate.save(filename)
|
|
|
|