Spaces:
Sleeping
Sleeping
File size: 13,322 Bytes
0f4f3d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import os
import time
import json
import logging
from dotenv import load_dotenv
from langgraph.graph import StateGraph, END
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from typing import TypedDict, Annotated, Sequence
import operator
import random
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("GAIA_Agent")
# Load environment variables
load_dotenv()
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
raise ValueError("Missing GOOGLE_API_KEY environment variable")
# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b, error on zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Compute a mod b."""
return a % b
# --- Browser Tools ---
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia and return up to 3 relevant documents."""
try:
# Ensure query contains "discography" keyword
if "discography" not in query.lower():
query = f"{query} discography"
docs = WikipediaLoader(query=query, load_max_docs=3).load()
if not docs:
return "No Wikipedia results found."
results = []
for doc in docs:
title = doc.metadata.get('title', 'Unknown Title')
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"Wikipedia search error: {str(e)}"
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv and return up to 3 relevant papers."""
try:
docs = ArxivLoader(query=query, load_max_docs=3).load()
if not docs:
return "No arXiv papers found."
results = []
for doc in docs:
title = doc.metadata.get('Title', 'Unknown Title')
authors = ", ".join(doc.metadata.get('Authors', []))
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"arXiv search error: {str(e)}"
@tool
def web_search(query: str) -> str:
"""Search the web using DuckDuckGo and return top results."""
try:
search = DuckDuckGoSearchRun()
result = search.run(query)
return f"Web search results for '{query}':\n{result[:2000]}" # Limit content length
except Exception as e:
return f"Web search error: {str(e)}"
# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# --- Tool Setup ---
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
arxiv_search,
web_search,
]
# --- Graph Builder ---
def build_graph():
# Initialize model with Gemini 2.5 Flash
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-flash",
temperature=0.3,
google_api_key=google_api_key,
max_retries=0, # Disable internal retries
request_timeout=30 # Keep timeout reasonable
)
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# 1. Define state structure
class AgentState(TypedDict):
messages: Annotated[Sequence, operator.add]
step_count: int
start_time: float
last_action: str
api_errors: int # Track consecutive API errors
# 2. Create graph
workflow = StateGraph(AgentState)
# 3. Define node functions
def agent_node(state: AgentState):
"""Main agent node with manual retry handling"""
# Ensure state has required fields
state.setdefault("start_time", time.time())
state.setdefault("step_count", 0)
state.setdefault("last_action", "start")
state.setdefault("api_errors", 0)
# Check global timeout (2 minutes)
if time.time() - state["start_time"] > 120:
return {
"messages": [AIMessage(content="AGENT ERROR (GLOBAL_TIMEOUT): Execution exceeded 2-minute limit")],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "timeout",
"api_errors": state["api_errors"]
}
# Check step limit (max 8 steps)
if state["step_count"] >= 8:
return {
"messages": [AIMessage(content="AGENT ERROR (STEP_LIMIT): Exceeded maximum step count of 8")],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "step_limit",
"api_errors": state["api_errors"]
}
# Check consecutive API errors
if state["api_errors"] >= 3:
return {
"messages": [AIMessage(content="AGENT ERROR (API_LIMIT): Too many consecutive API errors")],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "api_limit",
"api_errors": state["api_errors"]
}
try:
# Add variable delay to avoid rate limiting
delay = 2 + random.uniform(0, 3) # 2-5 seconds
time.sleep(delay)
# Call API without automatic retries
response = llm_with_tools.invoke(state["messages"])
# Reset error counter on success
return {
"messages": [response],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "agent",
"api_errors": 0 # Reset error counter
}
except Exception as e:
# Detailed error logging
error_details = f"Gemini API Error: {type(e).__name__}: {str(e)}"
logger.error(error_details)
error_type = "UNKNOWN"
if "429" in str(e) or "ResourceExhausted" in str(e):
error_type = "RESOURCE_EXHAUSTED"
elif "400" in str(e):
error_type = "INVALID_REQUEST"
elif "503" in str(e):
error_type = "SERVICE_UNAVAILABLE"
error_msg = f"AGENT ERROR ({error_type}): {error_details[:300]}"
return {
"messages": [AIMessage(content=error_msg)],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "error",
"api_errors": state["api_errors"] + 1 # Increment error counter
}
def tool_node(state: AgentState):
"""Tool execution node"""
# Ensure state has required fields
state.setdefault("start_time", time.time())
state.setdefault("step_count", 0)
state.setdefault("last_action", "start")
state.setdefault("api_errors", 0)
# Check global timeout (2 minutes)
if time.time() - state["start_time"] > 120:
return {
"messages": [AIMessage(content="AGENT ERROR (GLOBAL_TIMEOUT): Execution exceeded 2-minute limit")],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "timeout",
"api_errors": state["api_errors"]
}
last_msg = state["messages"][-1]
tool_calls = last_msg.additional_kwargs.get("tool_calls", [])
responses = []
for call in tool_calls:
tool_name = call["function"]["name"]
tool_args = call["function"].get("arguments", {})
tool_func = next((t for t in tools if t.name == tool_name), None)
if not tool_func:
responses.append(f"Tool {tool_name} not available")
continue
try:
# Parse arguments
if isinstance(tool_args, str):
try:
tool_args = json.loads(tool_args)
except json.JSONDecodeError:
if "query" in tool_args:
tool_args = {"query": tool_args}
else:
tool_args = {"query": tool_args}
# Execute tool
result = tool_func.invoke(tool_args)
responses.append(f"{tool_name} result: {str(result)[:1000]}")
except Exception as e:
responses.append(f"{tool_name} error: {str(e)}")
tool_response_content = "\n".join(responses)
return {
"messages": [AIMessage(content=tool_response_content)],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "tool",
"api_errors": state["api_errors"] # Preserve error count
}
# 4. Add nodes to workflow
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
# 5. Set entry point
workflow.set_entry_point("agent")
# 6. Define conditional edges
def should_continue(state: AgentState):
last_msg = state["messages"][-1]
# Handle timeout or step limit errors
if "AGENT ERROR (GLOBAL_TIMEOUT)" in last_msg.content or "AGENT ERROR (STEP_LIMIT)" in last_msg.content or "AGENT ERROR (API_LIMIT)" in last_msg.content:
return "end"
# Handle all other errors
if "AGENT ERROR" in last_msg.content:
# For RESOURCE_EXHAUSTED errors, wait longer before retrying
if "RESOURCE_EXHAUSTED" in last_msg.content:
time.sleep(10 + random.uniform(0, 10)) # Wait 10-20 seconds
return "agent"
# Route to tools if tool calls exist
if hasattr(last_msg, "tool_calls") and last_msg.tool_calls:
return "tools"
# End if final answer is present
if "FINAL ANSWER" in last_msg.content:
return "end"
# Continue to agent otherwise
return "agent"
workflow.add_conditional_edges(
"agent",
should_continue,
{
"agent": "agent",
"tools": "tools",
"end": END
}
)
# 7. Define flow after tool node
workflow.add_edge("tools", "agent")
# 8. Compile graph
return workflow.compile()
# Initialize agent graph
agent_graph = build_graph()
# Wrapper function to ensure execution within time limits
def run_agent(question):
# Create initial state with all required fields
initial_state = {
"messages": [
SystemMessage(content=system_prompt),
HumanMessage(content=question)
],
"step_count": 0,
"start_time": time.time(),
"last_action": "start",
"api_errors": 0
}
# Run with overall timeout
start_time = time.time()
result = None
end_state_reached = False
try:
# Execute with 3-minute overall timeout
for step in agent_graph.stream(initial_state):
# Check overall timeout every step
if time.time() - start_time > 180: # 3 minutes
return {"error": "Overall execution timeout (3 minutes)"}
# Capture the final state when the graph completes
if END in step:
result = step[END]
end_state_reached = True
break
except Exception as e:
return {"error": f"Execution failed: {str(e)}"}
# Extract final answer safely
if end_state_reached and result is not None:
if "messages" in result and result["messages"]:
return {"answer": result["messages"][-1].content}
else:
return {"error": "Agent finished but produced no messages"}
else:
return {"error": "Agent did not complete execution"}
# 示例调用函数(在app.py中使用)
def process_question(question):
# Add initial delay to avoid burst requests
time.sleep(1 + random.uniform(0, 2))
response = run_agent(question)
if "answer" in response:
return response["answer"]
elif "error" in response:
return f"Error: {response['error']}"
else:
return "Unexpected response format" |