File size: 5,133 Bytes
db7e060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client

# Load environment variables
load_dotenv()

# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract b from a."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide a by b, error on zero."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Compute a mod b."""
    return a % b

# --- Browser Tools ---
@tool
def wiki_search(query: str) -> dict:
    """Search Wikipedia and return up to 2 documents."""
    docs = WikipediaLoader(query=query, load_max_docs=2).load()
    results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs]
    return {"wiki_results": "\n---\n".join(results)}

@tool
def web_search(query: str) -> dict:
    """Search Tavily and return up to 3 results."""
    docs = TavilySearchResults(max_results=3).invoke(query=query)
    results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs]
    return {"web_results": "\n---\n".join(results)}

@tool
def arxiv_search(query: str) -> dict:
    """Search Arxiv and return up to 3 docs."""
    docs = ArxivLoader(query=query, load_max_docs=3).load()
    results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content[:1000]}" for d in docs]
    return {"arxiv_results": "\n---\n".join(results)}

# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# --- System message ---
sys_msg = SystemMessage(content=system_prompt)

# --- Retriever Tool ---
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))

vector_store = SupabaseVectorStore(
    client=supabase,
    embedding=embeddings,                                  table_name="documents",
    query_name="match_documents_langchain")

retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(

        search_type="similarity",

        search_kwargs={"k": 5}
    ),
    name="Question Search",
    description="A tool to retrieve similar questions from the vector store."
)

tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arxiv_search,
]

# --- Graph Builder ---
def build_graph(provider: str = "huggingface"):
    llm = ChatHuggingFace(

        llm=HuggingFaceEndpoint(

            repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct"

        ),

    )

    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Define no    def assistant(state: MessagesState):
        """Assistant node"""

      
          return {"messages [ [llm_with_tools.invoke(state["messages"])]}se]}





    # Retriever  returns AIMessage    def retriever(state: MessagesState):


        """Retriever node"""


        similar_question = vector_store.similarity_search(state["messages"][0].content)


        print('Similar questions:')


        print(similar_question)


        if len(similar_question) > 0:


            example_msg = HumanMessage(


                content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",


      ntent}]}


            return {"messages": [sys_msg] + state["messages"] + [example_msg]}


        return {"messages": [sys_msg] + state["m

    # Add nodesessages"]}





    builder = StateGraph(MessagesState)


    builder.add_node("retriever", retriever)


    builder.add_node("assistant", assistant)


    builder.add_node("tools", 



    # Add edgesToolNode(tools))


    builder.add_edge(START, "retriever")


    builder.add_edge("retriever", "assistant")


    builder.add_conditional_edges(


        "assistant",


        tools_condition,


    )


    builder.add_edge("tools", "assistant")ever")



    # Compile graph

    return builder.compile()