Spaces:
Sleeping
Sleeping
File size: 8,117 Bytes
c9fdd06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
import time
import json
import logging
from dotenv import load_dotenv
from langgraph.graph import StateGraph, END
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from tenacity import retry, stop_after_attempt, wait_exponential
from typing import TypedDict, Annotated, Sequence
import operator
# 配置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("GAIA_Agent")
# 加载环境变量
load_dotenv()
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
raise ValueError("Missing GOOGLE_API_KEY environment variable")
# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b, error on zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Compute a mod b."""
return a % b
# --- Browser Tools ---
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia and return up to 3 relevant documents."""
try:
# 确保查询包含"discography"关键词
if "discography" not in query.lower():
query = f"{query} discography"
docs = WikipediaLoader(query=query, load_max_docs=3).load()
if not docs:
return "No Wikipedia results found."
results = []
for doc in docs:
title = doc.metadata.get('title', 'Unknown Title')
content = doc.page_content[:2000] # 限制内容长度
results.append(f"Title: {title}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"Wikipedia search error: {str(e)}"
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv and return up to 3 relevant papers."""
try:
docs = ArxivLoader(query=query, load_max_docs=3).load()
if not docs:
return "No arXiv papers found."
results = []
for doc in docs:
title = doc.metadata.get('Title', 'Unknown Title')
authors = ", ".join(doc.metadata.get('Authors', []))
content = doc.page_content[:2000] # 限制内容长度
results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"arXiv search error: {str(e)}"
@tool
def web_search(query: str) -> str:
"""Search the web using DuckDuckGo and return top results."""
try:
search = DuckDuckGoSearchRun()
result = search.run(query)
return f"Web search results for '{query}':\n{result[:2000]}" # 限制内容长度
except Exception as e:
return f"Web search error: {str(e)}"
# --- 加载系统提示 ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# --- 工具设置 ---
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
arxiv_search,
web_search,
]
# --- 图构建器 ---
def build_graph():
# 初始化模型 - 使用指定的 gemini-2.5-flash
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-flash", # 保持使用指定的模型
temperature=0.3,
google_api_key=google_api_key,
max_retries=5,
request_timeout=60
)
# 绑定工具到LLM
llm_with_tools = llm.bind_tools(tools)
# 1. 定义状态结构
class AgentState(TypedDict):
messages: Annotated[Sequence, operator.add]
retry_count: int
# 2. 创建图
workflow = StateGraph(AgentState)
# 3. 定义节点函数
def agent_node(state: AgentState):
"""主代理节点"""
try:
# 添加请求间隔
time.sleep(2)
# 带重试的调用
@retry(stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, min=4, max=30))
def invoke_with_retry():
return llm_with_tools.invoke(state["messages"])
response = invoke_with_retry()
return {"messages": [response], "retry_count": 0}
except Exception as e:
error_details = f"Gemini API Error: {type(e).__name__}: {str(e)}"
logger.error(error_details)
error_type = "UNKNOWN"
if "429" in str(e):
error_type = "QUOTA_EXCEEDED"
elif "400" in str(e):
error_type = "INVALID_REQUEST"
elif "503" in str(e):
error_type = "SERVICE_UNAVAILABLE"
new_retry_count = state.get("retry_count", 0) + 1
error_msg = f"AGENT ERROR ({error_type}): {error_details[:300]}"
if new_retry_count < 3:
error_msg += "\n\nWill retry after delay..."
else:
error_msg += "\n\nMax retries exceeded. Please try again later."
return {"messages": [AIMessage(content=error_msg)], "retry_count": new_retry_count}
def tool_node(state: AgentState):
"""工具执行节点"""
last_msg = state["messages"][-1]
tool_calls = last_msg.additional_kwargs.get("tool_calls", [])
responses = []
for call in tool_calls:
tool_name = call["function"]["name"]
tool_args = call["function"].get("arguments", {})
tool_func = next((t for t in tools if t.name == tool_name), None)
if not tool_func:
responses.append(f"Tool {tool_name} not available")
continue
try:
if isinstance(tool_args, str):
try:
tool_args = json.loads(tool_args)
except json.JSONDecodeError:
if "query" in tool_args:
tool_args = {"query": tool_args}
else:
tool_args = {"query": tool_args}
result = tool_func.invoke(tool_args)
responses.append(f"{tool_name} result: {str(result)[:1000]}")
except Exception as e:
responses.append(f"{tool_name} error: {str(e)}")
tool_response_content = "\n".join(responses)
return {"messages": [AIMessage(content=tool_response_content)], "retry_count": 0}
# 4. 添加节点到工作流
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
# 5. 设置入口点
workflow.set_entry_point("agent")
# 6. 定义条件边
def should_continue(state: AgentState):
last_msg = state["messages"][-1]
retry_count = state.get("retry_count", 0)
if "AGENT ERROR" in last_msg.content:
if retry_count < 3:
return "agent"
return "end"
if hasattr(last_msg, "tool_calls") and last_msg.tool_calls:
return "tools"
if "FINAL ANSWER" in last_msg.content:
return "end"
return "agent"
workflow.add_conditional_edges(
"agent",
should_continue,
{
"agent": "agent",
"tools": "tools",
"end": END
}
)
# 7. 定义工具节点后的流向
workflow.add_edge("tools", "agent")
# 8. 编译图
return workflow.compile()
# 初始化代理图
agent_graph = build_graph() |