Spaces:
Sleeping
Sleeping
File size: 10,773 Bytes
0a72192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import os
import time
import json
import re
import calendar
from datetime import datetime
from dotenv import load_dotenv
from langgraph.graph import StateGraph, END
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from tenacity import retry, stop_after_attempt, wait_exponential
from typing import TypedDict, Annotated, Sequence, List, Dict, Union
import operator
# Load environment variables
load_dotenv()
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
raise ValueError("Missing GOOGLE_API_KEY environment variable")
# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b, error on zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Compute a mod b."""
return a % b
# --- Browser Tools ---
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia and return up to 3 relevant documents."""
try:
docs = WikipediaLoader(query=query, load_max_docs=3).load()
if not docs:
return "No Wikipedia results found."
results = []
for doc in docs:
title = doc.metadata.get('title', 'Unknown Title')
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"Wikipedia search error: {str(e)}"
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv and return up to 3 relevant papers."""
try:
docs = ArxivLoader(query=query, load_max_docs=3).load()
if not docs:
return "No arXiv papers found."
results = []
for doc in docs:
title = doc.metadata.get('Title', 'Unknown Title')
authors = ", ".join(doc.metadata.get('Authors', []))
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"arXiv search error: {str(e)}"
@tool
def web_search(query: str) -> str:
"""Search the web using DuckDuckGo and return top results."""
try:
search = DuckDuckGoSearchRun()
result = search.run(query)
return f"Web search results for '{query}':\n{result[:2000]}" # Limit content length
except Exception as e:
return f"Web search error: {str(e)}"
# --- Enhanced Tools ---
@tool
def filter_by_year(items: List[Dict], year_range: str) -> List[Dict]:
"""Filter items containing year information, returning only those within specified range"""
try:
start_year, end_year = map(int, year_range.split('-'))
filtered = []
for item in items:
# Extract year from different possible keys
year = item.get('year') or item.get('release_year') or item.get('date')
if not year:
continue
# Convert to integer if possible
if isinstance(year, str) and year.isdigit():
year = int(year)
if isinstance(year, int) and start_year <= year <= end_year:
filtered.append(item)
return filtered
except Exception as e:
return f"Filter error: {str(e)}"
@tool
def extract_albums(text: str) -> List[Dict]:
"""Extract album information from text, automatically detecting names and years"""
albums = []
# Pattern 1: Album Name (Year)
pattern1 = r'\"?(.+?)\"?\s*[\(\[](\d{4})[\)\]]'
# Pattern 2: Year: Album Name
pattern2 = r'(\d{4}):\s*\"?(.+?)\"?[\n\,]'
for pattern in [pattern1, pattern2]:
matches = re.findall(pattern, text)
for match in matches:
# Handle different match group orders
if len(match) == 2:
if match[0].isdigit(): # Year comes first
year, name = match
else: # Name comes first
name, year = match
try:
year = int(year)
albums.append({"name": name.strip(), "year": year})
except ValueError:
continue
return albums
@tool
def compare_values(a: Union[str, int, float], b: Union[str, int, float]) -> str:
"""Compare two values with automatic type detection (number/date/string)"""
try:
# Attempt numeric comparison
a_num = float(a) if isinstance(a, str) else a
b_num = float(b) if isinstance(b, str) else b
if a_num == b_num:
return "equal"
return "greater" if a_num > b_num else "less"
except (ValueError, TypeError):
pass
# Attempt date comparison
date_formats = [
"%Y-%m-%d", "%d %B %Y", "%B %d, %Y", "%m/%d/%Y",
"%Y", "%B %Y", "%b %d, %Y", "%d/%m/%Y"
]
for fmt in date_formats:
try:
a_date = datetime.strptime(str(a), fmt)
b_date = datetime.strptime(str(b), fmt)
if a_date == b_date:
return "equal"
return "greater" if a_date > b_date else "less"
except ValueError:
continue
# String comparison as fallback
a_str = str(a).lower().strip()
b_str = str(b).lower().strip()
if a_str == b_str:
return "equal"
return "greater" if a_str > b_str else "less"
@tool
def count_items(items: List) -> int:
"""Count the number of items in a list"""
return len(items)
# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# --- Tool Setup ---
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
arxiv_search,
web_search,
filter_by_year, # Enhanced tool
extract_albums, # Enhanced tool
compare_values, # Enhanced tool
count_items # Enhanced tool
]
# --- Graph Builder ---
def build_graph():
# Initialize model with Gemini 2.5 Flash
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-flash",
temperature=0.3,
google_api_key=google_api_key,
max_retries=3
)
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# 1. Define state structure
class AgentState(TypedDict):
messages: Annotated[Sequence, operator.add]
structured_data: dict # New field for structured information
# 2. Create graph
workflow = StateGraph(AgentState)
# 3. Define node functions
def agent_node(state: AgentState):
"""Main agent node"""
try:
# Remove forced delay to improve performance
# time.sleep(1) # Commented out for performance
# Call with retry mechanism
@retry(stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10))
def invoke_with_retry():
return llm_with_tools.invoke(state["messages"])
response = invoke_with_retry()
return {"messages": [response]}
except Exception as e:
error_type = "UNKNOWN"
if "429" in str(e):
error_type = "QUOTA_EXCEEDED"
elif "400" in str(e):
error_type = "INVALID_REQUEST"
error_msg = f"AGENT ERROR ({error_type}): {str(e)[:200]}"
return {"messages": [AIMessage(content=error_msg)]}
def tool_node(state: AgentState):
"""Tool execution node"""
last_msg = state["messages"][-1]
tool_calls = last_msg.additional_kwargs.get("tool_calls", [])
responses = []
for call in tool_calls:
tool_name = call["function"]["name"]
tool_args = call["function"].get("arguments", {})
# Find the tool
tool_func = next((t for t in tools if t.name == tool_name), None)
if not tool_func:
responses.append(f"Tool {tool_name} not available")
continue
try:
# Parse arguments
if isinstance(tool_args, str):
tool_args = json.loads(tool_args)
# Execute tool
result = tool_func.invoke(tool_args)
# Store structured results
if tool_name in ["extract_albums", "filter_by_year"]:
state["structured_data"][tool_name] = result
responses.append(f"{tool_name} result: {str(result)[:1000]}") # Limit result length
except Exception as e:
responses.append(f"{tool_name} error: {str(e)}")
tool_response_content = "\n".join(responses)
return {"messages": [AIMessage(content=tool_response_content)]}
# 4. Add nodes to workflow
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
# 5. Set entry point
workflow.set_entry_point("agent")
# 6. Define conditional edges
def should_continue(state: AgentState):
last_msg = state["messages"][-1]
# End on error
if "AGENT ERROR" in last_msg.content:
return "end"
# Go to tools if there are tool calls
if hasattr(last_msg, "tool_calls") and last_msg.tool_calls:
return "tools"
# End if final answer is present
if "FINAL ANSWER" in last_msg.content:
return "end"
# Otherwise continue with agent
return "agent"
workflow.add_conditional_edges(
"agent",
should_continue,
{
"agent": "agent",
"tools": "tools",
"end": END
}
)
# 7. Define flow after tool node
workflow.add_edge("tools", "agent")
# 8. Compile graph
return workflow.compile()
# Initialize agent graph
agent_graph = build_graph() |