File size: 10,773 Bytes
0a72192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import os
import time
import json
import re
import calendar
from datetime import datetime
from dotenv import load_dotenv
from langgraph.graph import StateGraph, END
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from tenacity import retry, stop_after_attempt, wait_exponential
from typing import TypedDict, Annotated, Sequence, List, Dict, Union
import operator

# Load environment variables
load_dotenv()
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
    raise ValueError("Missing GOOGLE_API_KEY environment variable")

# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract b from a."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide a by b, error on zero."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Compute a mod b."""
    return a % b

# --- Browser Tools ---
@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia and return up to 3 relevant documents."""
    try:
        docs = WikipediaLoader(query=query, load_max_docs=3).load()
        if not docs:
            return "No Wikipedia results found."
        
        results = []
        for doc in docs:
            title = doc.metadata.get('title', 'Unknown Title')
            content = doc.page_content[:2000]  # Limit content length
            results.append(f"Title: {title}\nContent: {content}")
        
        return "\n\n---\n\n".join(results)
    except Exception as e:
        return f"Wikipedia search error: {str(e)}"

@tool
def arxiv_search(query: str) -> str:
    """Search Arxiv and return up to 3 relevant papers."""
    try:
        docs = ArxivLoader(query=query, load_max_docs=3).load()
        if not docs:
            return "No arXiv papers found."
        
        results = []
        for doc in docs:
            title = doc.metadata.get('Title', 'Unknown Title')
            authors = ", ".join(doc.metadata.get('Authors', []))
            content = doc.page_content[:2000]  # Limit content length
            results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}")
        
        return "\n\n---\n\n".join(results)
    except Exception as e:
        return f"arXiv search error: {str(e)}"

@tool
def web_search(query: str) -> str:
    """Search the web using DuckDuckGo and return top results."""
    try:
        search = DuckDuckGoSearchRun()
        result = search.run(query)
        return f"Web search results for '{query}':\n{result[:2000]}"  # Limit content length
    except Exception as e:
        return f"Web search error: {str(e)}"

# --- Enhanced Tools ---
@tool
def filter_by_year(items: List[Dict], year_range: str) -> List[Dict]:
    """Filter items containing year information, returning only those within specified range"""
    try:
        start_year, end_year = map(int, year_range.split('-'))
        filtered = []
        for item in items:
            # Extract year from different possible keys
            year = item.get('year') or item.get('release_year') or item.get('date')
            if not year:
                continue
            
            # Convert to integer if possible
            if isinstance(year, str) and year.isdigit():
                year = int(year)
            
            if isinstance(year, int) and start_year <= year <= end_year:
                filtered.append(item)
        return filtered
    except Exception as e:
        return f"Filter error: {str(e)}"

@tool
def extract_albums(text: str) -> List[Dict]:
    """Extract album information from text, automatically detecting names and years"""
    albums = []
    
    # Pattern 1: Album Name (Year)
    pattern1 = r'\"?(.+?)\"?\s*[\(\[](\d{4})[\)\]]'
    # Pattern 2: Year: Album Name
    pattern2 = r'(\d{4}):\s*\"?(.+?)\"?[\n\,]'
    
    for pattern in [pattern1, pattern2]:
        matches = re.findall(pattern, text)
        for match in matches:
            # Handle different match group orders
            if len(match) == 2:
                if match[0].isdigit():  # Year comes first
                    year, name = match
                else:  # Name comes first
                    name, year = match
                
                try:
                    year = int(year)
                    albums.append({"name": name.strip(), "year": year})
                except ValueError:
                    continue
    
    return albums

@tool
def compare_values(a: Union[str, int, float], b: Union[str, int, float]) -> str:
    """Compare two values with automatic type detection (number/date/string)"""
    try:
        # Attempt numeric comparison
        a_num = float(a) if isinstance(a, str) else a
        b_num = float(b) if isinstance(b, str) else b
        if a_num == b_num:
            return "equal"
        return "greater" if a_num > b_num else "less"
    except (ValueError, TypeError):
        pass
    
    # Attempt date comparison
    date_formats = [
        "%Y-%m-%d", "%d %B %Y", "%B %d, %Y", "%m/%d/%Y", 
        "%Y", "%B %Y", "%b %d, %Y", "%d/%m/%Y"
    ]
    
    for fmt in date_formats:
        try:
            a_date = datetime.strptime(str(a), fmt)
            b_date = datetime.strptime(str(b), fmt)
            if a_date == b_date:
                return "equal"
            return "greater" if a_date > b_date else "less"
        except ValueError:
            continue
    
    # String comparison as fallback
    a_str = str(a).lower().strip()
    b_str = str(b).lower().strip()
    if a_str == b_str:
        return "equal"
    return "greater" if a_str > b_str else "less"

@tool
def count_items(items: List) -> int:
    """Count the number of items in a list"""
    return len(items)

# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# --- Tool Setup ---
tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    arxiv_search,
    web_search,
    filter_by_year,   # Enhanced tool
    extract_albums,   # Enhanced tool
    compare_values,    # Enhanced tool
    count_items        # Enhanced tool
]

# --- Graph Builder ---
def build_graph():
    # Initialize model with Gemini 2.5 Flash
    llm = ChatGoogleGenerativeAI(
        model="gemini-2.5-flash",
        temperature=0.3,
        google_api_key=google_api_key,
        max_retries=3
    )
    
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)
    
    # 1. Define state structure
    class AgentState(TypedDict):
        messages: Annotated[Sequence, operator.add]
        structured_data: dict  # New field for structured information
        
    # 2. Create graph
    workflow = StateGraph(AgentState)
    
    # 3. Define node functions
    def agent_node(state: AgentState):
        """Main agent node"""
        try:
            # Remove forced delay to improve performance
            # time.sleep(1)  # Commented out for performance
            
            # Call with retry mechanism
            @retry(stop=stop_after_attempt(3),
                   wait=wait_exponential(multiplier=1, min=4, max=10))
            def invoke_with_retry():
                return llm_with_tools.invoke(state["messages"])
            
            response = invoke_with_retry()
            return {"messages": [response]}
        
        except Exception as e:
            error_type = "UNKNOWN"
            if "429" in str(e):
                error_type = "QUOTA_EXCEEDED"
            elif "400" in str(e):
                error_type = "INVALID_REQUEST"
                
            error_msg = f"AGENT ERROR ({error_type}): {str(e)[:200]}"
            return {"messages": [AIMessage(content=error_msg)]}
    
    def tool_node(state: AgentState):
        """Tool execution node"""
        last_msg = state["messages"][-1]
        tool_calls = last_msg.additional_kwargs.get("tool_calls", [])
        
        responses = []
        for call in tool_calls:
            tool_name = call["function"]["name"]
            tool_args = call["function"].get("arguments", {})
            
            # Find the tool
            tool_func = next((t for t in tools if t.name == tool_name), None)
            if not tool_func:
                responses.append(f"Tool {tool_name} not available")
                continue
            
            try:
                # Parse arguments
                if isinstance(tool_args, str):
                    tool_args = json.loads(tool_args)
                
                # Execute tool
                result = tool_func.invoke(tool_args)
                
                # Store structured results
                if tool_name in ["extract_albums", "filter_by_year"]:
                    state["structured_data"][tool_name] = result
                
                responses.append(f"{tool_name} result: {str(result)[:1000]}")  # Limit result length
            except Exception as e:
                responses.append(f"{tool_name} error: {str(e)}")
        
        tool_response_content = "\n".join(responses)
        return {"messages": [AIMessage(content=tool_response_content)]}
    
    # 4. Add nodes to workflow
    workflow.add_node("agent", agent_node)
    workflow.add_node("tools", tool_node)
    
    # 5. Set entry point
    workflow.set_entry_point("agent")
    
    # 6. Define conditional edges
    def should_continue(state: AgentState):
        last_msg = state["messages"][-1]
        
        # End on error
        if "AGENT ERROR" in last_msg.content:
            return "end"
        
        # Go to tools if there are tool calls
        if hasattr(last_msg, "tool_calls") and last_msg.tool_calls:
            return "tools"
        
        # End if final answer is present
        if "FINAL ANSWER" in last_msg.content:
            return "end"
            
        # Otherwise continue with agent
        return "agent"
    
    workflow.add_conditional_edges(
        "agent",
        should_continue,
        {
            "agent": "agent",
            "tools": "tools",
            "end": END
        }
    )
    
    # 7. Define flow after tool node
    workflow.add_edge("tools", "agent")
    
    # 8. Compile graph
    return workflow.compile()

# Initialize agent graph
agent_graph = build_graph()