File size: 7,129 Bytes
b3dc600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39fbf52
b3dc600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import time
import json
from dotenv import load_dotenv
from langgraph.graph import StateGraph, END
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from tenacity import retry, stop_after_attempt, wait_exponential
from typing import TypedDict, Annotated, Sequence
import operator

# Load environment variables
load_dotenv()
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
    raise ValueError("Missing GOOGLE_API_KEY environment variable")

# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract b from a."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide a by b, error on zero."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Compute a mod b."""
    return a % b

# --- Browser Tools ---
@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia and return up to 3 relevant documents."""
    try:
        docs = WikipediaLoader(query=query, load_max_docs=3).load()
        if not docs:
            return "No Wikipedia results found."
        
        results = []
        for doc in docs:
            title = doc.metadata.get('title', 'Unknown Title')
            content = doc.page_content[:2000]  # Limit content length
            results.append(f"Title: {title}\nContent: {content}")
        
        return "\n\n---\n\n".join(results)
    except Exception as e:
        return f"Wikipedia search error: {str(e)}"

@tool
def arxiv_search(query: str) -> str:
    """Search Arxiv and return up to 3 relevant papers."""
    try:
        docs = ArxivLoader(query=query, load_max_docs=3).load()
        if not docs:
            return "No arXiv papers found."
        
        results = []
        for doc in docs:
            title = doc.metadata.get('Title', 'Unknown Title')
            authors = ", ".join(doc.metadata.get('Authors', []))
            content = doc.page_content[:2000]  # Limit content length
            results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}")
        
        return "\n\n---\n\n".join(results)
    except Exception as e:
        return f"arXiv search error: {str(e)}"

@tool
def web_search(query: str) -> str:
    """Search the web using DuckDuckGo and return top results."""
    try:
        search = DuckDuckGoSearchRun()
        result = search.run(query)
        return f"Web search results for '{query}':\n{result[:2000]}"  # Limit content length
    except Exception as e:
        return f"Web search error: {str(e)}"

# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# --- Tool Setup ---
tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    arxiv_search,
    web_search,
]

# --- Graph Builder ---
def build_graph():
    # Initialize model with Gemini 2.5 Flash
    llm = ChatGoogleGenerativeAI(
        model="gemini-1.5-flash",
        temperature=0.3,
        google_api_key=google_api_key,
        max_retries=3
    )
    
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)
    
    # 1. 定义状态结构
    class AgentState(TypedDict):
        messages: Annotated[Sequence, operator.add]
    
    # 2. 创建图
    workflow = StateGraph(AgentState)
    
    # 3. 定义节点函数
    def agent_node(state: AgentState):
        """主代理节点"""
        try:
            # 添加请求间隔
            time.sleep(1)
            
            # 带重试的调用
            @retry(stop=stop_after_attempt(3),
                   wait=wait_exponential(multiplier=1, min=4, max=10))
            def invoke_with_retry():
                return llm_with_tools.invoke(state["messages"])
            
            response = invoke_with_retry()
            return {"messages": [response]}
        
        except Exception as e:
            error_type = "UNKNOWN"
            if "429" in str(e):
                error_type = "QUOTA_EXCEEDED"
            elif "400" in str(e):
                error_type = "INVALID_REQUEST"
                
            error_msg = f"AGENT ERROR ({error_type}): {str(e)[:200]}"
            return {"messages": [AIMessage(content=error_msg)]}
    
    def tool_node(state: AgentState):
        """工具执行节点"""
        last_msg = state["messages"][-1]
        tool_calls = last_msg.additional_kwargs.get("tool_calls", [])
        
        responses = []
        for call in tool_calls:
            tool_name = call["function"]["name"]
            tool_args = call["function"].get("arguments", {})
            
            # 查找工具
            tool_func = next((t for t in tools if t.name == tool_name), None)
            if not tool_func:
                responses.append(f"Tool {tool_name} not available")
                continue
            
            try:
                # 解析参数
                if isinstance(tool_args, str):
                    tool_args = json.loads(tool_args)
                
                # 执行工具
                result = tool_func.invoke(tool_args)
                responses.append(f"{tool_name} result: {result[:1000]}")  # 限制结果长度
            except Exception as e:
                responses.append(f"{tool_name} error: {str(e)}")
        
        # 修复括号错误:确保正确关闭所有括号
        tool_response_content = "\n".join(responses)
        return {"messages": [AIMessage(content=tool_response_content)]}
    
    # 4. 添加节点到工作流
    workflow.add_node("agent", agent_node)
    workflow.add_node("tools", tool_node)
    
    # 5. 设置入口点
    workflow.set_entry_point("agent")
    
    # 6. 定义条件边
    def should_continue(state: AgentState):
        last_msg = state["messages"][-1]
        
        # 错误情况直接结束
        if "AGENT ERROR" in last_msg.content:
            return "end"
        
        # 有工具调用则转到工具节点
        if hasattr(last_msg, "tool_calls") and last_msg.tool_calls:
            return "tools"
        
        # 包含最终答案则结束
        if "FINAL ANSWER" in last_msg.content:
            return "end"
            
        # 其他情况继续代理处理
        return "agent"
    
    workflow.add_conditional_edges(
        "agent",
        should_continue,
        {
            "agent": "agent",
            "tools": "tools",
            "end": END
        }
    )
    
    # 7. 定义工具节点后的流向
    workflow.add_edge("tools", "agent")
    
    # 8. 编译图
    return workflow.compile()

# 初始化代理图
agent_graph = build_graph()