vtony's picture
Upload 2 files
7f6f6b7 verified
raw
history blame
7.44 kB
import os
import time
from dotenv import load_dotenv
from langgraph.graph import StateGraph, END
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from tenacity import retry, stop_after_attempt, wait_exponential
# Load environment variables
load_dotenv()
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
raise ValueError("Missing GOOGLE_API_KEY environment variable")
# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b, error on zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Compute a mod b."""
return a % b
# --- Browser Tools ---
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia and return up to 3 relevant documents."""
try:
docs = WikipediaLoader(query=query, load_max_docs=3).load()
if not docs:
return "No Wikipedia results found."
results = []
for doc in docs:
title = doc.metadata.get('title', 'Unknown Title')
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"Wikipedia search error: {str(e)}"
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv and return up to 3 relevant papers."""
try:
docs = ArxivLoader(query=query, load_max_docs=3).load()
if not docs:
return "No arXiv papers found."
results = []
for doc in docs:
title = doc.metadata.get('Title', 'Unknown Title')
authors = ", ".join(doc.metadata.get('Authors', []))
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"arXiv search error: {str(e)}"
@tool
def web_search(query: str) -> str:
"""Search the web using DuckDuckGo and return top results."""
try:
search = DuckDuckGoSearchRun()
result = search.run(query)
return f"Web search results for '{query}':\n{result[:2000]}" # Limit content length
except Exception as e:
return f"Web search error: {str(e)}"
# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# --- System message ---
sys_msg = SystemMessage(content=system_prompt)
# --- Tool Setup ---
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
arxiv_search,
web_search,
]
# --- Graph Builder ---
def build_graph():
# Initialize model (Gemini 2.0 Flash)
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash-exp",
temperature=0.3,
google_api_key=google_api_key,
max_retries=3
)
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Define state
class AgentState:
def __init__(self, messages):
self.messages = messages
# Node definitions with error handling
def agent_node(state: AgentState):
"""Main agent node that processes messages with retry logic"""
try:
# Add rate limiting
time.sleep(1) # 1 second delay between requests
# Add retry logic for API quota issues
@retry(stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10))
def invoke_llm_with_retry():
return llm_with_tools.invoke(state.messages)
response = invoke_llm_with_retry()
return AgentState(state.messages + [response])
except Exception as e:
# Handle specific errors
error_type = "UNKNOWN"
if "429" in str(e):
error_type = "QUOTA_EXCEEDED"
elif "400" in str(e):
error_type = "INVALID_REQUEST"
error_msg = f"AGENT ERROR ({error_type}): {str(e)[:200]}"
return AgentState(state.messages + [AIMessage(content=error_msg)])
# Tool node
def tool_node(state: AgentState):
"""Execute tools based on agent's request"""
last_message = state.messages[-1]
tool_calls = last_message.additional_kwargs.get("tool_calls", [])
tool_responses = []
for tool_call in tool_calls:
tool_name = tool_call["function"]["name"]
tool_args = tool_call["function"].get("arguments", {})
# Find the tool
tool_func = next((t for t in tools if t.name == tool_name), None)
if not tool_func:
tool_responses.append(f"Tool {tool_name} not found")
continue
try:
# Execute the tool
if isinstance(tool_args, str):
# Parse JSON if arguments are in string format
import json
tool_args = json.loads(tool_args)
result = tool_func.invoke(tool_args)
tool_responses.append(f"Tool {tool_name} result: {result}")
except Exception as e:
tool_responses.append(f"Tool {tool_name} error: {str(e)}")
return AgentState(state.messages + [AIMessage(content="\n".join(tool_responses)])
# Custom condition function
def should_continue(state: AgentState):
last_message = state.messages[-1]
# If there was an error, end
if "AGENT ERROR" in last_message.content:
return "end"
# Check for tool calls
if hasattr(last_message, "tool_calls") and last_message.tool_calls:
return "tools"
# Check for final answer
if "FINAL ANSWER" in last_message.content:
return "end"
# Otherwise, continue to agent
return "agent"
# Build the graph
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
# Set entry point
workflow.set_entry_point("agent")
# Define edges
workflow.add_conditional_edges(
"agent",
should_continue,
{
"agent": "agent",
"tools": "tools",
"end": END
}
)
workflow.add_conditional_edges(
"tools",
lambda state: "agent",
{
"agent": "agent"
}
)
return workflow.compile()
# Initialize the agent graph
agent_graph = build_graph()