Spaces:
Sleeping
Sleeping
import os | |
import time | |
from dotenv import load_dotenv | |
from langgraph.graph import StateGraph, END | |
from langgraph.prebuilt import ToolNode, tools_condition | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_community.tools import DuckDuckGoSearchRun | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage | |
from langchain_core.tools import tool | |
from tenacity import retry, stop_after_attempt, wait_exponential | |
# Load environment variables | |
load_dotenv() | |
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY") | |
if not google_api_key: | |
raise ValueError("Missing GOOGLE_API_KEY environment variable") | |
# --- Math Tools --- | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two integers.""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two integers.""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract b from a.""" | |
return a - b | |
def divide(a: int, b: int) -> float: | |
"""Divide a by b, error on zero.""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Compute a mod b.""" | |
return a % b | |
# --- Browser Tools --- | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia and return up to 3 relevant documents.""" | |
try: | |
docs = WikipediaLoader(query=query, load_max_docs=3).load() | |
if not docs: | |
return "No Wikipedia results found." | |
results = [] | |
for doc in docs: | |
title = doc.metadata.get('title', 'Unknown Title') | |
content = doc.page_content[:2000] # Limit content length | |
results.append(f"Title: {title}\nContent: {content}") | |
return "\n\n---\n\n".join(results) | |
except Exception as e: | |
return f"Wikipedia search error: {str(e)}" | |
def arxiv_search(query: str) -> str: | |
"""Search Arxiv and return up to 3 relevant papers.""" | |
try: | |
docs = ArxivLoader(query=query, load_max_docs=3).load() | |
if not docs: | |
return "No arXiv papers found." | |
results = [] | |
for doc in docs: | |
title = doc.metadata.get('Title', 'Unknown Title') | |
authors = ", ".join(doc.metadata.get('Authors', [])) | |
content = doc.page_content[:2000] # Limit content length | |
results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}") | |
return "\n\n---\n\n".join(results) | |
except Exception as e: | |
return f"arXiv search error: {str(e)}" | |
def web_search(query: str) -> str: | |
"""Search the web using DuckDuckGo and return top results.""" | |
try: | |
search = DuckDuckGoSearchRun() | |
result = search.run(query) | |
return f"Web search results for '{query}':\n{result[:2000]}" # Limit content length | |
except Exception as e: | |
return f"Web search error: {str(e)}" | |
# --- Load system prompt --- | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# --- System message --- | |
sys_msg = SystemMessage(content=system_prompt) | |
# --- Tool Setup --- | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
wiki_search, | |
arxiv_search, | |
web_search, | |
] | |
# --- Graph Builder --- | |
def build_graph(): | |
# Initialize model (Gemini 2.0 Flash) | |
llm = ChatGoogleGenerativeAI( | |
model="gemini-2.0-flash-exp", | |
temperature=0.3, | |
google_api_key=google_api_key, | |
max_retries=3 | |
) | |
# Bind tools to LLM | |
llm_with_tools = llm.bind_tools(tools) | |
# Define state | |
class AgentState: | |
def __init__(self, messages): | |
self.messages = messages | |
# Node definitions with error handling | |
def agent_node(state: AgentState): | |
"""Main agent node that processes messages with retry logic""" | |
try: | |
# Add rate limiting | |
time.sleep(1) # 1 second delay between requests | |
# Add retry logic for API quota issues | |
def invoke_llm_with_retry(): | |
return llm_with_tools.invoke(state.messages) | |
response = invoke_llm_with_retry() | |
return AgentState(state.messages + [response]) | |
except Exception as e: | |
# Handle specific errors | |
error_type = "UNKNOWN" | |
if "429" in str(e): | |
error_type = "QUOTA_EXCEEDED" | |
elif "400" in str(e): | |
error_type = "INVALID_REQUEST" | |
error_msg = f"AGENT ERROR ({error_type}): {str(e)[:200]}" | |
return AgentState(state.messages + [AIMessage(content=error_msg)]) | |
# Tool node | |
def tool_node(state: AgentState): | |
"""Execute tools based on agent's request""" | |
last_message = state.messages[-1] | |
tool_calls = last_message.additional_kwargs.get("tool_calls", []) | |
tool_responses = [] | |
for tool_call in tool_calls: | |
tool_name = tool_call["function"]["name"] | |
tool_args = tool_call["function"].get("arguments", {}) | |
# Find the tool | |
tool_func = next((t for t in tools if t.name == tool_name), None) | |
if not tool_func: | |
tool_responses.append(f"Tool {tool_name} not found") | |
continue | |
try: | |
# Execute the tool | |
if isinstance(tool_args, str): | |
# Parse JSON if arguments are in string format | |
import json | |
tool_args = json.loads(tool_args) | |
result = tool_func.invoke(tool_args) | |
tool_responses.append(f"Tool {tool_name} result: {result}") | |
except Exception as e: | |
tool_responses.append(f"Tool {tool_name} error: {str(e)}") | |
return AgentState(state.messages + [AIMessage(content="\n".join(tool_responses)]) | |
# Custom condition function | |
def should_continue(state: AgentState): | |
last_message = state.messages[-1] | |
# If there was an error, end | |
if "AGENT ERROR" in last_message.content: | |
return "end" | |
# Check for tool calls | |
if hasattr(last_message, "tool_calls") and last_message.tool_calls: | |
return "tools" | |
# Check for final answer | |
if "FINAL ANSWER" in last_message.content: | |
return "end" | |
# Otherwise, continue to agent | |
return "agent" | |
# Build the graph | |
workflow = StateGraph(AgentState) | |
# Add nodes | |
workflow.add_node("agent", agent_node) | |
workflow.add_node("tools", tool_node) | |
# Set entry point | |
workflow.set_entry_point("agent") | |
# Define edges | |
workflow.add_conditional_edges( | |
"agent", | |
should_continue, | |
{ | |
"agent": "agent", | |
"tools": "tools", | |
"end": END | |
} | |
) | |
workflow.add_conditional_edges( | |
"tools", | |
lambda state: "agent", | |
{ | |
"agent": "agent" | |
} | |
) | |
return workflow.compile() | |
# Initialize the agent graph | |
agent_graph = build_graph() |