vtony's picture
Upload 2 files
229c4ae verified
raw
history blame
8.4 kB
import os
import time
import json
import logging
from dotenv import load_dotenv
from langgraph.graph import StateGraph, END
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from tenacity import retry, stop_after_attempt, wait_exponential
from typing import TypedDict, Annotated, Sequence
import operator
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("GAIA_Agent")
# Load environment variables
load_dotenv()
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
raise ValueError("Missing GOOGLE_API_KEY environment variable")
# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b, error on zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Compute a mod b."""
return a % b
# --- Browser Tools ---
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia and return up to 3 relevant documents."""
try:
# Ensure query contains "discography" keyword
if "discography" not in query.lower():
query = f"{query} discography"
docs = WikipediaLoader(query=query, load_max_docs=3).load()
if not docs:
return "No Wikipedia results found."
results = []
for doc in docs:
title = doc.metadata.get('title', 'Unknown Title')
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"Wikipedia search error: {str(e)}"
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv and return up to 3 relevant papers."""
try:
docs = ArxivLoader(query=query, load_max_docs=3).load()
if not docs:
return "No arXiv papers found."
results = []
for doc in docs:
title = doc.metadata.get('Title', 'Unknown Title')
authors = ", ".join(doc.metadata.get('Authors', []))
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"arXiv search error: {str(e)}"
@tool
def web_search(query: str) -> str:
"""Search the web using DuckDuckGo and return top results."""
try:
search = DuckDuckGoSearchRun()
result = search.run(query)
return f"Web search results for '{query}':\n{result[:2000]}" # Limit content length
except Exception as e:
return f"Web search error: {str(e)}"
# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# --- Tool Setup ---
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
arxiv_search,
web_search,
]
# --- Graph Builder ---
def build_graph():
# Initialize model with Gemini 2.5 Flash
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-flash",
temperature=0.3,
google_api_key=google_api_key,
max_retries=5,
request_timeout=60
)
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# 1. Define state structure
class AgentState(TypedDict):
messages: Annotated[Sequence, operator.add]
retry_count: int
# 2. Create graph
workflow = StateGraph(AgentState)
# 3. Define node functions
def agent_node(state: AgentState):
"""Main agent node"""
try:
# Add request delay to avoid rate limiting
time.sleep(2)
# Retry mechanism for API calls
@retry(stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, min=4, max=30))
def invoke_with_retry():
return llm_with_tools.invoke(state["messages"])
response = invoke_with_retry()
return {"messages": [response], "retry_count": 0}
except Exception as e:
# Detailed error logging
error_details = f"Gemini API Error: {type(e).__name__}: {str(e)}"
logger.error(error_details)
error_type = "UNKNOWN"
if "429" in str(e):
error_type = "QUOTA_EXCEEDED"
elif "400" in str(e):
error_type = "INVALID_REQUEST"
elif "503" in str(e):
error_type = "SERVICE_UNAVAILABLE"
new_retry_count = state.get("retry_count", 0) + 1
error_msg = f"AGENT ERROR ({error_type}): {error_details[:300]}"
if new_retry_count < 3:
error_msg += "\n\nWill retry after delay..."
else:
error_msg += "\n\nMax retries exceeded. Please try again later."
return {"messages": [AIMessage(content=error_msg)], "retry_count": new_retry_count}
def tool_node(state: AgentState):
"""Tool execution node"""
last_msg = state["messages"][-1]
tool_calls = last_msg.additional_kwargs.get("tool_calls", [])
responses = []
for call in tool_calls:
tool_name = call["function"]["name"]
tool_args = call["function"].get("arguments", {})
tool_func = next((t for t in tools if t.name == tool_name), None)
if not tool_func:
responses.append(f"Tool {tool_name} not available")
continue
try:
# Parse arguments
if isinstance(tool_args, str):
try:
tool_args = json.loads(tool_args)
except json.JSONDecodeError:
if "query" in tool_args:
tool_args = {"query": tool_args}
else:
tool_args = {"query": tool_args}
# Execute tool
result = tool_func.invoke(tool_args)
responses.append(f"{tool_name} result: {str(result)[:1000]}")
except Exception as e:
responses.append(f"{tool_name} error: {str(e)}")
tool_response_content = "\n".join(responses)
return {"messages": [AIMessage(content=tool_response_content)], "retry_count": 0}
# 4. Add nodes to workflow
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
# 5. Set entry point
workflow.set_entry_point("agent")
# 6. Define conditional edges
def should_continue(state: AgentState):
last_msg = state["messages"][-1]
retry_count = state.get("retry_count", 0)
# Handle error cases
if "AGENT ERROR" in last_msg.content:
if retry_count < 3:
return "agent"
return "end"
# Route to tools if tool calls exist
if hasattr(last_msg, "tool_calls") and last_msg.tool_calls:
return "tools"
# End if final answer is present
if "FINAL ANSWER" in last_msg.content:
return "end"
# Continue to agent otherwise
return "agent"
workflow.add_conditional_edges(
"agent",
should_continue,
{
"agent": "agent",
"tools": "tools",
"end": END
}
)
# 7. Define flow after tool node
workflow.add_edge("tools", "agent")
# 8. Compile graph
return workflow.compile()
# Initialize agent graph
agent_graph = build_graph()